

Is there a need for a new direct EBL measurement?

A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization

Asantha Cooray^{1,*} Alexandre Amblard¹, Charles Beichman², Dominic Benford³, Rebecca Bernstein⁴, James J. Bock^{2,5}, Mark Brodwin⁶, Volker Bromm⁷, Renyue Cen⁸, Ranga R. Chary², Mark Devlin⁹, Timothy Dolch¹⁰, Hervé Dole¹¹, Eli Dwek³, David Elbaz¹², Michael Fall¹⁰, Giovanni Fazio¹³, Henry Ferguson¹⁰, Steven Furlanetto¹⁴, Jonathan Gardner³, Mauro Giavalisco¹⁵, Rudy Gilmore⁴, Nickolay Gnedin¹⁶, Anthony Gonzalez¹⁷, Zoltan Haiman¹⁸, Michael Hauser⁹, Jiasheng Huang¹³, Sergei Ipatov¹⁹, Alexander Kashlinsky³, Brian Keating²⁰, Thomas Kelsall³, Eiichiro Komatsu⁷, Guilaine Lagache¹¹, Louis R. Levenson², Avi Loeb¹³, Piero Madau⁴, John C. Mather³, Toshio Matsumoto²¹, Shuji Matsuura²¹, Kalevi Mattila²², Harvey Moseley³, Leonidas Moustakas⁵, S. Peng Oh²³, Larry Petro¹⁰, Joel Primack⁴, William Reach², Tom Renbarger²⁰, Paul Shapiro⁷, Daniel Stern⁵, Ian Sullivan², Aparna Venkatesan²⁴, Michael Werner⁵, Rogier Windhorst²⁵, Edward L. Wright¹⁴, Michael Zemcov^{2,5}

Science Program White Paper for Astro-2010 Decadal Survey arXiv:0902.2372

The epoch of reionization and a spectral signature in EBL

Fluctuations vs. Mean Intensity

Fluctuations alone cannot establish the integrated SFR during reionization - degeneracies between various model parameters from mass scale of reionization, mean redshift of reionization, duration of reionization etc.

Sources in more massive dark matter halos at a lower redshift can be tuned to produce the same level of fluctuations as sources in less massive halos at a higher redshift.

However, the two scenarios will have two different EBL amplitudes.

Thus, a precise EBL spectrum must be combined with fluctuations to properly constrain the astrophysics of of reionization.

Infrared background is cosmologically important, a spectral signature from sources present during reionization.

The optical to IR extragalactic background light is highly uncertain

More precise measurements are wanted in near-IR

- absolute spectroscopy of sky from 0.8 – 3.0 μm with an ability to account for zodiacal light properly.

- fluctuation studies extending to 2 degrees or more with multi-wavelength coverage for cross-correlations

- in combination, establish reionization history, mass scale, duration!