Galaxy formation and evolution as probed with Extragalactic Background Light

- Galaxy Counts and the EBL
- Diffuse light from galaxies
- Is there something interesting in the near-IR?
 - The "fossil record" at z>3
 - The extrapolation of the high-z luminosity functions
- Searching for fluctuations with WFC3/IR

Background

- We have resolved 30-100% of the EBL
- We do not know how much is due to:
 - The wings of galaxies
 - The faint end of the LF post reionization

• The night sky is bright compared to galaxies!

- Sources at the epoch of reionization

Adapted from Leinert 1998

Bock+06

Modeling the light from detected galaxies

Galaxy counts
UDF, GOODS, NDWS, SDSS
Fit HST size-magnitude relation, and extrapolate

Missing light due to –incompleteness

- -wings of galaxies
- -photometric biases

Dolch et al. in preparation

Integrating the light from detected galaxies

Red curve:

lacksquare

- Typical galaxy catalog results
- Blue curve
 - Integrating over the size distribution
 - Accounting for the wings if the galaxies are a 50/50 mix of disks and spheroids
 - Accounting for photometric biases
- Black curve
 - Extrapolating to fainter magnitudes
- Green & cyan points
 - Estimates of the optical diffuse EBL

Well-behaved wings of galaxies can account for about half of the estimated diffuse optical EBL.

The outskirts of galaxies

The wings of galaxies may not be well behaved

- Hierarchical models build lumpy halos
- Streams and filaments can extend for 100s of kpc

Bullock & Johnston 2005

Martinez-Delgado+ 08

Cluster Diffuse Light

Intra-halo light from hierarchical models

Expected to contribute 10-20% for halos with >10¹³ M_☉

Ram pressure "fireballs"

- Subaru galaxy RB199
- 80 kpc ; Yoshida+ 08

60x2 kpc Optical filament in the Coma Cluster Subaru image; Yagi+

- The Luminosity function is evolving
 - Consistent with L* decreasing toward higher redshift

- Closing the energy budget for reionization requires one or more of the following:
 - Low IGM clumping
 - A steep faint-end LF
 - A large escape fraction,
 - Bluer galaxies

- UV slopes appear to be getting bluer
 - Toward high redshift
 - Toward lower luminosity

Controversial hints of a steeper LF at z>8

- Stellar mass evolution
 - Stellar masses at L* are not large at $z\sim7$
 - At most a few percent of present stellar mass density
 - Hard to hide the remnants of higher-z star formation if the IMF was not very top heavy

Fluctuations in the Near-IR from HST

- Thompson et al HST NICMOS:
 - Detected sources emit 7 nW m² sr⁻¹ compared to DClevel estimate of 70 nW m² sr⁻¹ from Matsumoto+ 2005
 - Sources of the remaining fluctuations are probably at z<8 (even for the longer-wavelength IRAC data).

IRAC 3.6µm

WFC3 H-band

Data Preparation

- Iteratively remove detector blemishes
 - Combined dithered images with some masking
 - Transfer combined image back to original image geometries and subtract
 - Smooth and detect blemishes or persistence
 - Mask and recombine for the final image
- Create pure noise images in original detector coordinates
 - Gaussian statistics okay for these images; match sky background
 - Predicted RMS matches measured RMS to within a few percent
 - Combine these just as for the real images
- Mask the detected sources
 - Ideally -- subtract the galaxy wings (work in progress)

Analysis Procedure

- Create a shuffled version of the image
 - Unmasked pixels are randomly shuffled, removing correlations
- For both the shuffled and unshuffled version:
 - Convolve the masked images with kernels of various sizes
 - Compute the histogram of pixel intensities P(D)
- Subtract the shuffled P(D) from the unshuffled P(D).
 - Excess is amplified when kernel matches the characteristic size of the sources

Validation

Tests on simulated UDF data

- Recover power-law slope to about ±0.1
- Generally recover the input size, with some outliers
- This should get better with more data

Simulated data

α=0.1,r=0.36"

α=0.5,r=0.36"

Preliminary results

- Simple power-law model:
 - N(M)~10^{αm}
 - Normalization fixed to match total counts 27<m<28
 - Constant size modeled with Gaussians
- Best fits
 - F160W: α = 0.5, r = 0.24''
 - F125W: α = 0.1, r = 0.12''
 - F105W: α = 0.3, r = 0.21''
- Steep slope in F160W is intriguing
- Change in slope is puzzling
 - More sanity tests needed

Near-IR Galaxy counts

- Faint-end slope is:
 - Flatter than α =0.5
 - Similar in all three bands
- Less than 5% of the galaxies at H>26.5 are identified as Lyman-break galaxies at z>6.5

Future Efforts

- Galaxy subtraction
- More sophisticated models
 - Galaxy size magnitude relation with scatter
- Better calibration of hot pixels and persistence
- More data

Potential for EBL measurements

- HST Multicycle treasury program will cover 830 square arcminutes at 1.2 and 1.6 microns to 27-28 magnitude
- Fluctuation measurements on larger scales will be possible

Reionization Simulation from Trac and Cen 2007

Large $\theta \leftarrow \leftarrow \leftarrow \leftarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ Small θ

- The large angle ($\theta \sim 1/30^{\circ}$) peak (green curve) is a linear-theory prediction of clustering of reionization sources.
- Small scale power is sensitive to the slope and normalization of the luminosity function and the sizes of the sources.
- large area surveys with WFC3 can (barely) reach large angle peak

Summary

- A conservative estimate suggests that known galaxies can account for about 50% of the observed (optical) EBL.
- Lumpy halos and intracluster light could contribute another 10-20%
- The fossil record at z>6 does not provide much support for a huge burst of star formation at z>10.
- WFC3 IR fluctuation analysis suggests fluctuations are consistent with a modest extrapolation of the number counts.

Theories crumble, but good observations never fade. -- Harlow Shapley