

NORTHROP GRUMMAN

Astronomical Observations with the Voyager Spacecraft

The View from 5 AU March 26, 2010

C. F. Lillie and R. S. Polidan Northrop Grumman Corporation

Topics

- The Mission
- The Spacecraft
- The Instruments
- Observations
- Guest Observer Program
- Lessons learned
- Conclusions

The Voyager Mission

- Exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium from Earth to Saturn
- An extended mission for the first flyby investigation of Uranus and it's rings and interplanetary studies beyond 20 AU
- The first flyby of Neptune, and the Voyager Interstellar Mission

The Voyager Spacecraft

Voyager Photopolarimeter Experiment (PPS)

PPS Mechanisms

BASEPLATE (STRUCURAL SUPPORT RING) MOTOR 1.0° 0.0625° (1/3)3.5° Aperture 0 \odot Polarization Analyzer Wheel Aperture Wheel 0.25° TELESCOPE Filter Aperture MOUNT (1/3) BACK FRONT Wheel

Position	Spectral	Effective	Half-power	Nominal
number	wavelength	bandwidth	sensitivity*	features
	(Angstroms)	(Angstroms)		
0	5900	100	30	Sodium D
1	4900	100	50	H beta
2	3900	100	45	He I, Ca II
3	3100	300	40	OH Emission
4	2650	300	25	O3, Mg II, Chromophore
5	2350	300	20	Si I, Rayleigh scattering
6	7500	300	8	KI, Aerosol scattering,
7	7270	100	4	CH4 absorption

* For a point source in counts accumulated during an 0.4 second integratio per incident photon /cm²/s/Angstrom

Voyager Ultra Violet Spectrometer (UVS)

- Pi Lyle Broadfoot U. of Arizona
- 128-Channel Wadsworth Spectrometer
- ~1200Å Bandpass (500Å to 1700Å)
- ~20Å spectral resolution (pt source)
- 2 fields of view (FWHM):
 - Airglow: 0.10° x 0.87°
 - Occultation: 0.25° x 0.87°
- Located on scan platform
- Spacecraft pointing limit cycle ~1°

NORTHROP GRUMMAN

Observations

- Cruise Science
 - Stellar calibration
 - Small body observations
 - Sky Background
- Encounter Science
 - Planetary and Satellite Photopolarimetry
 - Surface properties
 - Cloud particle size, distribution
 - Atmospheric scale height, temperature
 - Stellar Occultation's
 - Ring particle size, composition, distributions, dynamics
 - Atmospheric scale height, temperature
- Extended Mission
 - Uranus Neptune flybys
 - EUV Stellar, Sky Background Observations

PPS – Saturn's Rings

UVS Stellar Observaitons

- Voyager 1 and 2 both have small far-ultraviolet spectrometers (Broadfoot et al 1977, Space Sci Rev, 21, 183) as part of their instrument complement.
- Not long after both these missions launched in 1977 it was realized that these instruments could provide useful astronomical observations
 - Far-UV astrophysics was in its infancy
 - While the aperture was small ($\sim 0.75 \text{ cm}^2$), long integration times were easy
- Informal astronomical observations were performed in the early mission "cruise" phases (between planetary encounters)
 - Typical for planetary missions astrophysics observation done in a non-interference mode
 - No funding supplied for data analysis/publication
- In the mid-1980's R. Polidan and J. Holberg made a concerted and successful effort to convince the Astrophysics Division at NASA HQ that a formal Guest Observer Program (i.e. scheduled observations and funding for analysis/publication) was both desirable and possible
 - Voyager Project approval of the astronomical program
 - The existence of the necessary infrastructure at U Arizona to support Guest Observers

- In 1987 a formal Guest Observer Program was established by NASA and successfully ran for ~5 years
 - Program utilized both Voyager spacecraft, filling the long cruise periods between planetary encounters with astronomical observations
 - "The View for 30 AU": Started prior to the Neptune encounter in Aug 1989, continued post encounter
 - Proposals peer reviewed using standard NASA processes, time allocated, Guest Observers supported, papers published
 - Observations covered the range of UV bright targets
 - Nearby white dwarfs and other compact stars
 - Cataclysmic variables and related objects
 - UV Background
 - Supernovae remnants
 - Galaxies and QSOs (first Far-UV detection of a QSO Reichert et al 1987)
- Formal GO Program was terminated due to funding pressure

Lessons Learned

- Outer planet missions offer unique Opportunities for Astronomy
 - Long cruise periods with low pointed instrument activities
 - Stable, low temperature thermal environment
 - Dark sky (minimal zodiacal light background)
- Many Challenges
 - Science politics is a major hurdle
 - Planetary science vs. Astrophysics
 - Uniqueness counts
 - Limited resources
 - Size, weight, power
 - Cruise operation support
 - Operations Constraints
 - Pointing accuracy
 - Cones of avoidance (Sun, planets, satellites)
 - Limited field of regard
 - Configured flight software

- Excellent location for astronomical Observations
 - Missions need to be a joint Planetary/Astrophysics activity
 - Pointing accuracy requirement defined by astronomical instruments
 - Cruise operations augmented for operations astronomical
 - Planning and scheduling team
 - Additional communications opportunities
 - Separate central processor for astronomical instruments
 - Allows software changes without impact on spacecraft subsystems, safety, reliability, etc.
- Unique location for Sky Background Observations
 - No (scattered) zodiacal light observed with the PPS beyond \sim 2 AU
 - Need to observe in the infrared (7 to 30 microns) to see thermal emission from the interplanetary dust particles
 - Tunable Fabre-Perot interferometers with large field of view deserve serious consideration

