RETURN OF THE WIMP

AN ABUNDANCE OF ANOMALIES

Southern California BSM University of California Irvine Irvine, CA Saturday, Sep. 28, 2019

James Osborne UC San Diego

James Osborne | SoCal BSM 2019 | UCI

Plenty of evidence for dark matter interacting gravitationally.

• ~5x as much dark matter as ordinary matter in the universe.

• Present day abundance: $\Omega h^2 = 0.1188 \pm 0.0011$ (Planck, 2015)

James Osborne | SoCal BSM 2019 | UCI

Plenty of evidence for dark matter interacting gravitationally.

• ~5x as much dark matter as ordinary matter in the universe.

• Present day abundance: $\Omega h^2 = 0.1188 \pm 0.0011$ (Planck, 2015)

$\Omega h^2 = 0.1188 \pm 0.0011$, $\sigma \propto \alpha^2 / m^2$

<u>Weakly Interacting Massive Particles and the "WIMP miracle"</u>

• In the standard freeze-out scenario, the observed relic density is obtained for weak-scale interaction strengths and masses $\mathcal{O}(100 \text{ GeV})!$

James Osborne | SoCal BSM 2019 | UCI

Deliyergiyev, 2016

James Osborne | SoCal BSM 2019 | UCI

SUPERSYMMETRIC DARK MATTER

- Possible solution to the electroweak hierarchy problem.
- Predicts a WIMP-like dark matter candidate, stable due to R-parity.
- LHC probes strong dynamics well \longrightarrow heavy squarks & gluinos.
- Relatively, the electroweak sector of SUSY is poorly constrained.

Minimal Supersymmetric Standard Model (MSSM)

- 4 Majorana neutralinos, mixtures of $\{\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_u, \tilde{H}^0_d\}$.
- Relevant parameters: M_1 , M_2 , μ , and $\tan \beta$.
- Also 2 charginos, mixtures of charged wino and Higgsinos.

$$\chi = N_{11}\tilde{B}^0 + N_{12}\tilde{W}^0 + N_{13}\tilde{H}_d^0 + N_{14}\tilde{H}_u^0$$

THE LHC

oduction using "Recursive variables. [Run 2, 36.1 fb⁻¹]

• ATLAS Collaboration, 2018 [arXiv:1806.02293]

0

James Osborne | SoCal BSM 2019 | UCI

What can this tell us about the MSSM and dark matter?

• Carena, Osborne, Shah, and Wagner, 2018 [arXiv:1809.11082]

Signal Region	Observed Events	BG Events	Signi cance (Z)
$\mathrm{SR}2\ell_{\mathrm{Low}}$	19	84 58	1.39
$\mathrm{SR}2\ell_{\mathrm{ISR}}$	11	$2\ 7^{+2\ 8}_{-2\ 7}$	1.99
$SR3\ell_{Low}$	20	10 2	2.13
$\mathrm{SR}3\ell_\mathrm{ISR}$	12	39 10	3.02

- Heavy colored sector
- Wino-like cross-sections
- Bino-like LSP
- Low mass regime
- Degenerate $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$
- Compressed Spectrum

$$\Delta m \equiv m_{ ilde{\chi}_1^\pm/ ilde{\chi}_2^0} - m_{ ilde{\chi}_1^0} \sim 100 \; {
m GeV}$$

September 28, 2019 | **Slide 8**

What can this tell us about the MSSM and dark matter?

• Carena, Osborne, Shah, and Wagner, 2018 [arXiv:1809.11082]

September 28, 2019 | Slide 9

What can this tell us about the MSSM and dark matter?

• Carena, Osborne, Shah, and Wagner, 2018 [arXiv:1809.11082]

• SIDD blind spot:

$$\sigma_p^{\mathsf{SI}} \propto \frac{m_Z^4}{\mu^4} \left[\frac{2}{m_h^2} \left(m_{\tilde{\chi}_1^0} + 2\frac{\mu}{\tan\beta} \right) + \mathcal{O}\left(\frac{1}{m_{\mathsf{heavy}}^2} \right) \right]$$

$$p m_{\tilde{\chi}_1^0} \approx M_1 \quad \rightarrow \quad M_1 > 0, \, \mu < 0$$

- Z resonance: $m_{\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0} \sim 145$ GeV, tension with previous searches?
- h resonance: large $tan \beta$

• SDDD constrains
$$\mu \lesssim -275$$
 GeV

• Independent of M₂

September 28, 2019 | Slide 10

What can this tell us about the MSSM and dark matter?

• Carena, Osborne, Shah, and Wagner, 2018 [arXiv:1809.11082]

• SIDD blind spot:

$$\sigma_p^{\mathsf{SI}} \propto \frac{m_Z^4}{\mu^4} \left[\frac{2}{m_h^2} \left(m_{\tilde{\chi}_1^0} + 2 \frac{\mu}{\tan \beta} \right) + \mathcal{O} \left(\frac{1}{m_{\text{heavy}}^2} \right) \right]$$

•
$$m_{\tilde{\chi}_1^0} \approx M_1 \rightarrow M_1 > 0, \, \mu < 0$$

- Z resonance: $m_{\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0} \sim 145$ GeV, tension with previous searches?
- h resonance: large $tan \beta$
- SDDD constrains $\mu \lesssim -275$ GeV

• Independent of M₂

MUON ANOMALOUS MAGNETIC MOMENT

- Longstanding Brookhaven anomaly, $\sim 3.5 \sigma$.
- Fermilab $(g 2)_{\mu}$ experimental results expected soon.

$$\delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{\operatorname{theory}} = 268(63)(43) \times 10^{-11}$$

$$\int_{\mu}^{\mu} \int_{\chi^{\circ}}^{\mu} \int_{\mu}^{\chi^{\circ}} \int_{\mu}^{$$

• Requires slepton masses of order a few hundred GeV

 $\delta a_{\mu} \simeq$

ANATOMY OF MUON G-2

- Requires $\mu \times M_2 > 0 \rightarrow \mu < 0, M_2 > 0$.
- Left-handed sleptons cascade decay, reducing LHC constraints.
- $M_{ ilde{L}} \sim 400 \,\, {
 m GeV}$

September 28, 2019 | **Slide 13**

ANOMALIES BENCHMARK

Param.	[GeV]	Param.	[GeV]	Param.	[GeV]	Param.	[GeV]
μ	-300	M_2	-172	$M_{\widetilde{L}}$	400	M_H	1500
M_1	63.5	M_3	2000	$M_{\widetilde{Q}}$	2000	A_t	3000

Degenerate soft parameters between generations and chiralities for simplicity only.

Part.	$m \; [\text{GeV}]$	Part.	$m \; [\text{GeV}]$	Part.	$m \; [\text{GeV}]$	Part.	$m \; [\text{GeV}]$
h	125.84	$\widetilde{\chi}_1^{\pm}$	165.0	$\widetilde{\nu}_e$	395.0	\widetilde{u}_R	2069.8
Н	1500.03	$\widetilde{\chi}_2^{\pm}$	333.6	$\widetilde{ u}_{\mu}$	395.0	\widetilde{u}_L	2069.5
H_3	1500.00	$\widetilde{ au}_1$	389.5	$\widetilde{ u}_{ au}$	395.0	\widetilde{d}_R	2070.3
H^{\pm}	1502.38	$\widetilde{ au}_2$	415.0	\widetilde{g}	2129.2	\widetilde{d}_L	2071.0
$\widetilde{\chi}_1^0$	61.7	\widetilde{e}_R	402.4	\widetilde{t}_1	1927.7	\widetilde{s}_R	2070.3
$\widetilde{\chi}_2^0$	164.8	\widetilde{e}_L	402.6	\widetilde{t}_2	2131.6	\widetilde{s}_L	2071.0
$\widetilde{\chi}_3^0$	314.2	$\widetilde{\mu}_R$	402.4	\widetilde{b}_1	2067.1	\widetilde{c}_R	2069.8
$\widetilde{\chi}_4^0$	331.2	$\widetilde{\mu}_L$	402.6	\widetilde{b}_2	2074.1	\widetilde{c}_L	2069.5

James Osborne | SoCal BSM 2019 | UCI

GALACTIC CENTER EXCESS

Gamma ray excess ~ few GeV. [arXiv:1511.02938]

- Dark matter annihilation? [arXiv:1010.2752, etc.]
- Point-like sources, unknown population of millisecond pulsars? [arXiv:1506.05104, etc.]

GALACTIC CENTER EXCESS

nihilation? [arXiv:1010.2752, etc.]

Re sources, unknown population of millisecond pulsars? [arXiv:1506.05104, etc.]

James Osborne | SoCal BSM 2019 | UCI

ANATOMY OF THE GCE

What can we infer from the GCE if we take the ATLAS excess as signal?

• Carena, Osborne, Shah, and Wagner, 2019 [arXiv:1905.03768]

Rest of the story stays the same!

- $m_{\tilde{\chi}_1^0} \sim 60$ GeV.
- MSSM doesn't work: requires $m_{\chi} > 60$ GeV.
- Mismatch between relic resonance at finite temp. and indirect detection at 0 temp.
- CPV-MSSM: complex M₁ leads to s-wave component to h-mediated annihilation.
- NMSSM: Additional CP-odd singlet A_1 boosts resonant annihilation at 0 temp.

ANATOMY OF THE GCE

What can we infer from the GCE if we take the ATLAS excess as signal?

Carena, Osborne, Shah, and Wagner, 2019 [arXiv:1905.03768]

- CPV-MSSM: complex M_1 introduces electric dipole moments (EDMs).
- Scales as the inverse of slepton mass squared \longrightarrow no $(g-2)_{\mu}$ contribution.

Param.	Value	Param.	[GeV]	Param.	[GeV]	Param.	[GeV]
$\arg[M_1]$	5.8°	μ	-300	M_3	3000	A_t	2500
aneta	20	M_1	63.425	$M_{\widetilde{L}}$	3000	A_b	2500
$M_{H^{\pm}}$	$1500 { m GeV}$	M_2	-185	$M_{\widetilde{Q}}$	3000	$A_{ au}$	1000

• NMSSM: no problem accommodating $(g - 2)_{\mu}$.

Param.	Value	Param.	[GeV]	Param.	[GeV]	Param.	[GeV]
$\tan\beta$	20	$\mu_{ ext{eff}}$	-300	M_3	3000	A_{λ}	-1260
λ	0.15	M_1	62.62	$M_{\widetilde{L}}$	450	A_{κ}	-10.8
κ	-0.55	M_2	-171.	$M_{\widetilde{Q}}$	3000	A_t	4000

James Osborne | SoCal BSM 2019 | UCI

A NEW HOPE AT THE LHC (?)

ATLAS search for chargino-neutralino production using "emulated Recursive Jigsaw Reconstruction" (eRJR). [Run 2, 139 fb⁻¹]

- Confirms 3 σ excess with 36 fb⁻¹ data set, full Run 2 data set excess reduced to ~ 1 σ .
- ATLAS Collaboration, 2019 [ATLAS-CONF-2019-020]

Signal channel	Nobs	N _{exp}	$p(s=0)\left(Z\right)$
SR-low	51	46 ± 5	0.27 (0.60)
SR-ISR	30	23.0 ± 2.2	0.10 (1.27)

- Emulated search using traditional variables.
- Correlation between search variables good for some, not all.
- Awaiting RJR analysis of full Run 2 data, CMS equivalent.

James Osborne | SoCal BSM 2019 | UCI

RETURN OF THE WIMP

- Dark matter picture only cares about M_1 and μ for SIDD: $M_1 \times \mu < 0$.
- Excess fit for wino-like $m_{\tilde{\chi}_1^\pm/\tilde{\chi}_2^0} \sim 160$ GeV, bino-like $m_{\tilde{\chi}_1^0} \sim 60$ GeV.
- LHC cross sections depend on M_2 and mixing. Higgsino cross sections ~ 1/4 smaller than wino, unconstrained by LHC.
- Muon (g-2) suggests light sleptons, $M_{\tilde{L}}\sim 400$ GeV, which avoid LHC bounds by cascade decaying first to heavier charginos and neutralinos.
- Light spectrum is important to understand, as it can dramatically alter the interpretation of LHC SUSY searches.
- GCE may hint that an extended SUSY model is needed: CPV-MSSM or NMSSM to decouple relic density and indirect detection.

James Osborne | SoCal BSM 2019 | UCI

CONCLUSIONS

Low energy SUSY may still be waiting to be discovered at the LHC! Electroweak sector with a rich spectrum, not tightly constrained.

WIMP paradigm is still alive! Anomalies paint a detailed picture of what we might expect in the future.

LHC Run 3 and next generation astrophysical probes may finally begin to illuminate WIMP dark matter.

Thank You!

James Osborne | SoCal BSM 2019 | UCI