3D Structure of Disk and Jet

t=0.0

t=6.0

t=12.3

Plasma Physics Seminar, UCI

Acceleration of ultra-high energy cosmic rays and gamma-ray/neutrino sources

Toshikazu Ebisuzaki (Toshi2; RIKEN) Toshiki Tajima (UC Irvine)

contents

- Ultra High Energy Cosmic rays (~10²⁰ eV) and Star burst galaxy M82
- 2. Bow wake acceleration
- 3. Promising sources
 - Starburst/Seyfert Galaxies
 - Microquasars
 - UHECR/HE-gamma/neutrino
- 4. Conclusion

Origin of Cosmic rays

First sign of anisotropy in charged particles

M82: Nearest Starburst Galaxy

M82 X-1: 1000-10000 Ms BH

Just after the collision with M81

Composite of X-ray, IR, and optical emissions

NASA / CXC / JHU / D. Strickland; optical: NASA / ESA / STSCI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; inset – NASA / CXC / Tsinghua University / H. Feng et al.

Plasma Physics Seminar, UCI

contents

- Ultra High Energy Cosmic rays (~10²⁰ eV) and Star burst galaxy M82
- 2. Bow wake acceleration
- 3. Promising sources
 - Starburst/Seyfert Galaxies
 - Microquasars
 - UHECR/HE-gamma/neutrino
- 4. Conclusion

Fermi mechanism incoherent requires bending→synchrotron loss

Synchrotron radiation

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

3. Escape problem

→magnetic field does not disappear without adiabatic loss

Wakefield acceleration

Coherence in Wakefield

Jet of M87 Galaxy

T. Tajima and K. Shibata, Plasma Astrophysics (Perseus Publishing, Cambridge Masachusetts

Plasma Physics Seggran UCI

Eruption of magnetic field in an accretion disk

A Burst of Electromagnetic Disturbance

Tajima and Gilden 1987, ApJ 320, 741-745 Haswell, Tajima, and Sakai, 1992, ApJ, 401,

3-D relativistic MHD simulation

Wakefield Acceleration

• Stable acceleration structure

- Coherent and Strong Field
- Moving in $\cong c$
- Colinear acceleration
- across a long length
- Built in deep in the theory

• All the messenger channels

- Electrons→photons (HE, radio)
- − Protons→CRs→neutrinos
- Gravitational waves (NS mergers)

Variabilities

- Caused by disk instability
- In all messenger channels
- Violent and simultaneous

16

1D Particle-in-Cell simulation

with the code by Nagata2008

No Difficulties in wakefield acceleration even in UHECR

- Bending is inevitable
 →synchrotron loss
- 2. Confinement is difficult \rightarrow no acceleration
- 3. Escape problem

→magnetic field does not disappear without adiabatic loss

Co-linear acceleration No bending

Confinement in field structure with $\cong c$

Wakefield disappears naturally

cosmic ray acceleration and gamma-ray emission

BH Astronomy with Ultra High Energy CRs

contents

- Ultra High Energy Cosmic rays (~10²⁰ eV) and Star burst galaxy M82
- 2. Bow wake acceleration
- 3. Promising sources
 - Starburst/Seyfert Galaxies
 - Microquasars
 - UHECR/HE-gamma/neutrino
- 4. Conclusion

	name	NGC 253	M82	NGC 4945	NGC 1068	NGC 6814	Cen A	M87	For A	Cen B
	type	starburst			Seyfert			radio		
	d (Mpc)	3.5	3.6	3.6	14	23	3.6	17	19	23
	М _{вн} (10 ⁶ М _⊙)	0.0001	0.0001 -0.01	1.1	16	3.1	55	3400	130	10-3000
	L _{rad} (10 ⁴⁰ erg s ⁻¹)	0.91	5-20	300	3000	2.7	160	8-150	1.7	200
	W _{max} (10 ²⁰ eV)	6.1	2.7-81	28	100	0.026	0.89	0.001- 0.05	0.0017	0.08-3.7
	<i>⊖</i> (degree)	18	18	18	70	115	18	85	110	260
	$F_{UHECR}\left(rac{UHECR}{100 \ \mathrm{km}^2 \mathrm{yr}} ight)$	0.002	0.03-0.13	2.0	-	-	1.0	-	-	-
	$F_{UHECR,obs}\left(rac{UHECR}{100 \ km^2 yr} ight)$	0.013	0.4	0.016	-	-	0.016	-	-	-
	L _{γ,obs} (10 ⁴⁰ erg s ⁻¹)	0.61	1.2	2.0	15	20	1.7	65	27	390
	L _{γ,jet} (10 ⁴⁰ erg s ⁻¹)	0.079	0.44-1.7	26	260	0.24	13	0.70-11	0.15	17
	W _ν ² F _ν (10 ⁻¹⁴ GeV cm ⁻² s ⁻¹)	0.91	4.73-19	280	180	0.063	150	0.34-5.5	0.056	180
20	SNR_{ν} 20/2/(× 10 ⁻²)	0.0011	0.060-0.23	Plasana	Physics ³ Sem	ninar, UCI	1.9	0.042- 0.078	-	0.011 ₂₂

Possible UHECR sources

Excess map: three hot spots Aab et al. (2018) Astrophys. J. Letters, 853, L29

Model Flux Map - Starburst galaxies - E > 39 EeV

Background UHECR

 Luminosity density of AGN:
 l_v: 10³⁷ - 10³⁸ erg s⁻¹ Mpc⁻³

Х

•
$$J_{\text{CR}} = \frac{c l_{\gamma} \tau_{\text{CR}}}{4\pi} W^{-2} = 1.8 \times 10^{-28} [\text{particles}/(\text{GeV cm}^2 \text{ s sr})] \times \left(\frac{W}{10^{19} \text{ eV}}\right)^{-2} \left(\frac{l_{\gamma}}{10^{38} \text{ erg s}^{-1} (\text{Mpc})^{-3}}\right) \left(\frac{\tau(W_{\text{CR}})}{3.4 \times 10^9 \text{ yr}}\right),$$

Neutrino spectrum (Background)

2020/2 Aftesen et al. ArXive:1405.5303 ma Physics Seminar, UCI

Galactic Microquasars SS433, Cyg X-1, Cyg X-3, Sco X-1

- Close Binaries with BHs
 - radio jets with precessions
 - superluminal motions
 - HE gamma-ray source (Cherenkov T)
- Promising neutrino/UHECR sources

SS433 (W50) precession jets

Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source Aharonian et al 2006 J. Phys.: Conf. Ser. 39 408

Aharonian et al 2006 J. Phys.: Conf. Ser. 39 408

Aharonian et al 2006 A&A, 460, 743-749

X-ray Novae

- Close binaries with BH
- Transient bright microquasars
- ~One per year
- Promising candidate BUT
 Only three months

Time (days after outburst)

Plasmanaka and Shibazaki, Ann Rev. Astron. Astrophys., 1996, 34, 607-644

Conclusions

> Wakefield Acceleration

Accreting BH+disk+jet

←Astronomical Linear Accelerator

- Bursts of Intense Alfven/EM waves ←Laser
- − Jet \leftarrow wave guide
- Stable, coherent, and colinear acceleration

All of the messenger channels

- UHECRs
- Neutrinos
- photons (radio, optical, X-ray, and HE gamma), and GW (NS mergers)
- Violent and simultaneous Variabilities

M82: the nearest starburst galaxy

- **M82 X-1**: Intermediate Mass Blackholes (10^3 - $10^4 M_{\odot}$) 10^{41} erg/s
- Other nearby starburst galaxies (NGC253 and NGC4945)
- They are all gamma-ray sources (Fermi satellite)
- =possible origin of the hot spots in UHECRs

=likely High Energy Neutrino sources: IceCube and POEMMA

> Galactic Microquasars

- SS433, Cyg X-1, Cyg X-3, Sco X-1,,,
- radio jets with precessions, superluminal motions, and HE gamma-rays
- X-ray Novae=Highly transient: **Instantaneous exposre**
- promising gamma-ray/neutrino/UHECR sources

> Future mission: K-EUSO space observatory with Russian Space Agency

- Confirmation of south-north anisotropy
- Identification of starburst galaxies and galactic microquasars

Mini-EUSO launched August 22

22/8/2019 Launch, Site 31 Baikonur Cosmodrome

The EUSO program

1. EUSO-TA: Ground detector installed in 2013 at Telescope Array site: currently operational

2. EUSO-BALLOONS:

- 2014, Timmins, Canada
- 2017 NASA Ultra long duration flight. EUSO-SPB

3. TUS (2016): free-flyer

4. MINI-EUSO (2019): Detector from International Space Station (ISS): 40 kg total.

5. 2022 NASA EUSO-SPB-2

6. K-EUSO (2023): *ISS Approved by Russian Space Agency*

7. POEMMA (2025+): NASA

Back up

TA Hot Spot: UHECRs from M82?

Figure 1 This figure describes the geometry of the SS 433–W 50 system. (a) This mosaic was created using archival data ...

Hours of Right Ascension α (J2000)

Jet

Wave propagation in the jet

Skymap of neutrino events

Moharana and Razzaque, 2016, JCAP, 12, 021

Artesen et al. ArXive:1405.5303

スターバースト銀河中の伝搬

- ジェットが停まる距離 $D_{\text{stall}} = \frac{4\xi c^2}{9\kappa_{\text{T}} n_0 k T_0}$ $= 2.8 \times 10^3 [\text{pc}] \left(\frac{T_0}{10^6 \text{ K}}\right) \left(\frac{n_0}{10^2 \text{ cm}^{-3}}\right)^{-1} \left(\frac{\xi}{10^{-2}}\right) \left(\frac{\dot{m}}{0.1}\right) \left(\frac{m}{10^4}\right)^{-1}$
- pp相互作用の自由行程

$$D_{pp} = \frac{1}{n_0 \sigma_{pp}} = 1.2 \times 10^4 \text{ [pc]} \left(\frac{n_0}{10^3 \text{ cm}^{-3}}\right),$$

ガンマ線とニュートリノに変換される

• ラーモア半径

$$D_L = \frac{W_{CR}}{ZecB} = 1.1 \times 10^3 \text{ [pc] } Z\left(\frac{B}{100 \ \mu\text{G}}\right) \left(\frac{W_{CR}}{10^{20} \ \text{eV}}\right).$$

Magnetic deflection

 $-B \sim 10 \text{ nG for } D = 3.2 \text{ Mpc}$

•
$$\theta = 0.5^{\circ} \left(\frac{D}{Mpc}\right) \left(\frac{B}{nG}\right) \sim 17.4^{\circ}$$

• $\Delta \theta = 0.36 \left(\frac{D}{Mpc}\right)^{1/2} \left(\frac{D_c}{Mpc}\right)^{1/2} \left(\frac{B_r}{nG}\right) \sim 9.4^{\circ}$

- Consistent with Local Supercluster structure

Galaxy distribution in the supergalactic plane

Acceleration by pondermotive force at "bow wake"

NS-NS merger/GW burst GW170817

- 1.7 seconds delay in gamma-rays
- Lorentz invariance test: -3×10^{-15} $+7 \times 10^{-16}$

times of speed of light between GW and photons

Alfven wave

Shinkai, kanda, and Ebisuzaki, 2017, ApJ, 835, 276-283.

Neutrino and gamma ray flux

Taken from Anchordoqui et al. 2014, Phys. Rev. D., 89, 127304 and Yacobi et al. 2016, Ap. J., 823, 89, modified by TE

An AGN-like Jet in M82? X-ray/Radio (flare in 1981)

Xu et al. 2015 ApJ Letters 799, L28

54

UHECR emission: Beaming?

- Radio galaxies:
 - Angle to Line of sight $\theta > 10-20^{\circ}$
 - -M87 43° : off-axis
 - Cen A 50-80° : off-axis
- Blazers: $\theta < 10^{\circ}$
- No information for M82 X-1
 - Single jet?
 - $\rightarrow \theta < 10^{\circ}$ on-axis

