Starshot Project Status

James Benford
Microwave Sciences
jimbenford@gmail.com

Beam-Driven Sails

- Electromagnetic waves have momentum, both axial and angular.
- Therefore, a reflected beam of light exerts force proportional to its power: F = 2P/c

In practical units: F=6.7 newtons/gigawatt

Video frames of First Sail Flight, 2000

30 msec framing interval

BREAKTHROUGH STARSHOT

- Send 1-10 gram of scientific instrumentation to the Alpha Centauri system to study it.
- Do so by using a beam emitted from the Earth to accelerate a sail carrying the instrumentation to 0.2c.
- The capital cost of the equipment shall be less than \$10B.

Top 3 Risks for Beamer

- LASER Array Phase Control
- Atmospheric Phase Coherence/ Adaptive Optics
- Keeping Array pointed for a few minutes on 4 m sail
 - Half-power beam width (HPBW) is 30 μas
 - Hubble space telescope pointing stability is 2-5 mas
 - Mitigation: Sail rides the beam (passively or actively)

Phasing Challenge

Top 3 Risk Areas for Sailcraft

- Sail integrity under thrust/ reflectivity, absorptivity, uniformity etc.
 - Multitude of material requirements
 - Stress concentration
 - Beam uniformity requirements
- Sail stability on the beam (for a few minutes)
 - Being addressed by Sailcraft committee
 - Near future RFP for program of experiments and simulations
 - Also interested in ideas that passively beam-ride using tailored angular reflectance, for example, instead of Sailcraft shape or a hollow beam
- Sending Data (images) back from Alpha C with one watt laser and 4 m antenna
 - Link budget being addressed by cross-cutting team

No consensus has been reached on the "most suitable" geometry for sail stability

Circular membrane with integrated payload

Gas-filled sphere

Square membrane with lumped separate payload

Sail Flight Chamber (Acceleration & Stability)

A free-flying sail experiment at high vacuum

Diagnostics will include measures of position, velocity and velocity vector components, acceleration, orientation, imagery and temperatures. Induced instabilities can be tracked in real time.

Backup Slides

Roadmap

Starshot Beam-Driven Sail Test Facility(s)

- Experimental capabilities to test a variety of sails under vacuum, with the focus being on assessing stability of the sail riding on the beam. This apparatus will have a vertically pointing beam. Diagnostics will include measures of
- position,
- velocity and velocity vector components, acceleration,
- orientation,
- imagery,
- background gas composition (due to any outgassing of the sail) and
- temperatures.

Other Test Facility Requirements

- Data Acquisition & Analysis,
- Diagnostic Calibration Lab,
- Vacuum equipment support,
- Specialized tools,
- Machine shop,
- Conference room
- etc.

Sail Materials Development

- Starshot must optimize beam-driven sail performance (tensile strength, arial mass density (g/m²), reflectivity, operational temperature, emissivity and absorbtivity):
- Survey results on many candidate sail materials.
- Narrow to ~2 materials for lab tests
- ◆ Construct a mini-wafer prototype of size ~1-10 cm²
- Test in Facility for stability & acceleration

Carbon Fiber Microwave Sail

Material: Carbon Fiber Mat

Diameter: 3 cm

Thickness: ~ 1 mm

Mass: $\sim 6 \text{ mg}$

Areal Density: ~ 8.5 g/m²

Microwave Reflectivity: ~ 90%!

Beamer Functional Diagram

Summary

- ♦ No consensus has been reached on the "most suitable" geometry for stable sail flight.
- ◆ Sail Material choices abound, but requirements are daunting.
- ♦ We must develop
- Sail Simulation Codes
- -Beam-Driven Sail Test Facilities

We are hopeful!