

A Laser Proton Accelerator for 70th birthday

Xueqing Yan (颜学庆) && CLAPA group

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China, 100871

70th birthday workshop, Jan 25-26, 2018, UCI

Outline

- 1. Introduction
- 2. Compact laser plasma accelerator at Peking University
- 3. Experiments of generation and focusing of laser accelerated proton beams at PKU
- 4. Laser accelerator of 3-9 MeV proton beams with 1% energy spread
- 5. Summary

Linac

SKL of Nuclear Physics and Technology @ PKU

Laser accelerator

Application of Laser Driven Ions

The best way to do Cancer therapy is radiation therapy.

NJP 12 085003 (2010)PRL 95,195001 (2005)PRE 95, 023208 (2017)POP 14,055502 (2007)APL 95,101107 (2009)PRL 114, 215002 (2015)

1.5 g 2.7 g 4.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0.1 g 0.1 g 0.1 g 1.5 g 0.7 g 0.1 g 0

Highest energy ~100 MeV/u

Characteristics of Laser Driven Ion Beam

- Large energy spread~100%
- Large diverge angle~10°
- Small emittance $\sim 0.1 \pi$ mm.mrad
- Small initial size, spot source $\sim 5\mu m$
- Short pulse duration ~a few ps
- High peak current ~ 10^{10} - 10^{13} ppp, KA

Except maximum energy, RAMI (Repeatability, Availability, Maintainability and Inspectability) is important for applications in the near future.

Energy :1-44 MeV Energy spread: 0.5~±5% Transfer efficiency >90% Number: 10^8-10^10

Beam Spot on The Irradiation Platform

44 MeV with ±1% energy spread

44 MeV with ±4%energy spread

Jun-Gao Zhu *et al.*, Chin. Phys. Lett. 5, 34 (2017) Jun-Gao Zhu *et al.*, Chinese Physics C. (2017).

Experiments of Laser proton acceleration

Laser parameters

Energy: 1.8 J Duration: 30 fs Spot: 4.5 μ m × 5.3 μ m intensity: 8.3 × 10¹⁹ W/cm² Incident angle: 30 degree

0.8 μm-6 μm Al 0.2-6 μm plastic

Experiment with plastic target

Plastic targets produced proton beams with good stability and the beam cutoff energy stability better than 3% Stable protons were generated based on 20nm plastic target without PM.

Focusing with quadruple triplet lens (1)

The distance between target and quadruple triplet was 19 cm with a collection angle \pm 50 mrad.

Quadruple triplet lens + angular energy spectrum

The proton charge on MCPwas Significantly enhanced:

- 3.5 MeV ×7
- 4.5 MeV ×20
- 5.5 MeV ×20

Dipole magnet for energy selection (1)

Simulated distribution of proton with 3.3788 MeV central energy and \pm 5% energy spread on the third scintillator .

Quadruple doublet lens to refocus the beam

Proton propagation envelope with 5 MeV central energy and 5% energy spread.

Focused proton beams with different energies

3 MeV, 1%

5 MeV

4 MeV

6 MeV

L Tao et al. Phys. Med. Biol. 62 (2017) 5200

Figure 6. The 2D reconstruction result of the SOBP for an ideal situation with a specific tumor region.

Proton beam with 1% energy spread/10pC/10MeV

With the development of high-rep rate PW laser technology ,now we can envision a table-top proton cancer therapy machine very soon.

- ✓ A compact laser plasma accelerator (CLAPA) at Peking University has been built.
- ✓ 3-15 MeV proton beams have been generated with stability better than 3% by using plastic targets.
- ✓ With the beam line, laser accelerator of 3-9 MeV proton beams with 1% energy spread and 1-20 pC has been achieved.

Happy 70th birthday !

Verification of the energy accuracy

By using the aluminum foil cut-off energy, the accuracy of the beam line has been verified, 22

Emittance Measurement (1)

Molybdenum, 20 × 20 array of 0.1 mm holes

The emittance of 2.8 MeV proton from CLAPA

