Overview of Tri Alpha Energy's Experimental Program and Recent Progress on Transport Analysis

E. Trask, M.W. Binderbauer, T. Tajima, S. Putvinski, M. Tuszewski, S. Dettrick, H. Gota, S. Korepanov, A. Smirnov, M.C. Thompson, X. Yang, M. Cappello, and the TAE Team

Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688, USA

Tri Alpha Energy's experimental program has demonstrated reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid experimental devices, C-2 [1] and C-2U [2], have successfully produced a well-stabilized, sustainable FRC plasma state with NB injection (input power, $P_{NB} \sim 10+$ MW; 15 keV hydrogen) and end-on coaxial plasma guns. Changes to beam parameters and magnetic field profiles have synergistically led to improved confinement and stability of FRC plasmas and larger fast-ion build up. Our zero-dimensional power balance analysis detailing loss channel characteristics and plasma timescales show substantial improvements in equilibrium and transport parameters, in which electron energy confinement time strongly correlates with electron temperature, T_e ; i.e., showing scaling with a positive power of T_e scaling for the confinement time in our experimental device.

This advanced beam-driven FRC state has been produced and sustained for up to 5+ ms in C-2U, which is longer than all characteristic system time scales and only limited by hardware and electric supply constraints such as NB and plasma-gun power supplies. To further improve the FRC performance the C-2U device is being replaced by C-2W featuring higher injected NB power, longer pulse duration as well as enhanced edge-biasing systems and substantially upgraded divertors. Main C-2U experimental results including recent transport analysis as well as key features of C-2W will be presented.

[1] M.W. Binderbauer *et al.*, Phys. Plasmas 22, 056110 (2015).
[2] M.W. Binderbauer *et al.*, AIP Conference Proceedings 1721, 030003 (2016).