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Outline

e Motivation:

— No easy solution for fusion reactor
tokamak, spherical torus, stellarator (torsatron, heliotron, heliac, helias ..),
miller, FRC, RFP, spheromak, dipole ....

— Beam driven FRC, opportunity to reconsider plasma, highly nonlinear
medium, for fusion study from the view of fundamental discipline,

o “Rigid” approach or “soft” approach in designing device ?
— the former tries to kill the characteristics of self-organization of plasma
while the latter relies on it.

e Transport in “tokamak” (quasi-rigid system) dominated by self-
self-organized criticality, and the recipe to break it

e Transportin “stellarator ” (rigid system) and reciprocal relation
between linear and nonlinear response

“magnetic shear § ” as a parameter to regulate self-organization

e Discussion and summary



No easy solution for fusion reactor

A Single Null Negative Triangularity M. Kikuchi et al.,, ICPP2016, June
Tokamak Reactor Concept

Tokamak approach

based on H-mode & D-shape
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Optimized for core confinement
but not for power handling
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New (but realistic) innovation necessary optimized both for
“stability/confinement” and “power handing”



“Rigid” or “soft” approach in designing device ?

“Rigid-approach” “intermediate” “Soft-approach”
Magnetic field fully . Poloidal field : Only dia-magnetic current
determined from coil driven by current (BS-current)

High-performance realized High performance in going on ?
cf. H-mode (ETB), ITB, their combination
Self-organization of “plasma” “Full self-organization” of both
under rigid magnetic field, “plasma” and “magnetic field”
leading to L-mode A relaxed state after MHD instability
Self-organization in high pressure (high-f3)
(high input power regime) How the state can be again more self-

organized in high input power regime



“Rigid” or “soft” approach in designing device ?

“Rigid-approach”

Magnetic field fully
determined from coil

“intermediate”

Poloidal field :
driven by current (BS-current)

“plasma confinement”
e magnetic well (average): D

well

* magnetic shear:  §=rdlng(r)

. Large advantage in power handling
i.e. linear unrestricted divertor

“Soft-approach”

Only dia-magnetic current

RFC (reversed field configuration)

. No non-rational magnetic surface and

then no magnetic shear

g—>0 5=0

. Looks like “miller (rigid system)”

but essential difference, i.e.
closed core field with null O/X points



What determines spatio-temporal size of particle diffusion?
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“Rigid” or “soft” approach in designhing device ? : Takamak case

o Tokamak : “quasi-rigid” system, toroidal field is given from outside
while a freedom to control poloidal field by current drive
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Tokamak is a system which allows meso scale fluctuation

J.Y. Kim and M. Wakatani, PRL 73, 2200 (1994)

* Mode—st.ructure in non-uniform medium: Y. Kishimoto, J.Y. Kim, W. Horton, T. Tajima et al.,
(Extension to non-local ballooning theory) Plasmas Phys. Controlled Fusion 41, A663 (1999)
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“Constraint” on the profile and self-similar relaxation

e Constraint on the profile and relaxation
Kishimoto, Lebrun, Tajima, horton, Kim
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Constraint on profile
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e Avalanches on the self-organized profile = Self-similarity in the relaxation

e Spatio-temporal hierarchy
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Experimental study of “profile stiffness”

D. R. Mikkelsen ef al., Nucl. Fusion 43, 30 (2003)

« Stiffhess of thermal
transport in ELMy H-modes
1s examined.

H. Urano, et.al., Phys. Rev.
Lett. 109, 125001 (2012)
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Numerical laboratory for tokamak experiments
based on global gyro-kinetic modeling

Gyro-Kinetic based Numerical Experimental Tokamak : GKNET

. - Imadera, Kishimoto et al. 25" FEC, TH/P5-8
» Basic equation system

e Flux driven full-f global toroidal geometry with external source and sink

@+{R,H}-i+{v”,H}g=S +S . +C

a ¢ 6R V” source sink collision
1 1 . XN
D - <<CD>>a T Teo(l") (CD B <q)>f) = n,'o(r) J.J‘<fi>a B”dV”dlLl \/D))
* Electrostatic model with adiabatic electron 0 3

e Full-order of FLR effect
» Conservative linear collision operator

Heat input and dissipation
balance, leading to a self-
organized state

» Numerical method

n(r), 1(r), q(r)

* Vlasov solver : 4th-order Morinishi scheme
e Time integration : 4th-order RK scheme o +
 Parallelization: 5D (R-Z-¢-v-u) MPI decomposition E3E :

Ufr), A(r)

v Field equation is solved in real space (not k-space)
11




Transport events with different time and spatial scales

Time :

Intermittent (bursting) behavior due to various types of avalanches

Space : self-similarity in relaxation and self-organization in profile
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Transport events with different time and spatial scales

Time : Intermittent (bursting) behavior due to various types of avalanches
Space : self-similarity in relaxation and self-organization in profile
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Quasi-periodic bursts due to the radially extended global mode

« Appearance of radially extended ballooning

mode and subsequent growth, leading to a (A) t.:5.66 .
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Symmetry recovery due to the cancellation
between diamagnetic shear and mean ErxB shear

* The effect of global temperature profile is cancelled by that of global mean radial
electric field, so that the symmetry is recovered and the growth is enhanced.

1/2
1/3 2YoSinb,
~0 Ar=

k9§6r(wr + a)f)

Or(wr+wy)
2kgvos

50)7 80 = +
or

Y~ 70c0sby ~ 7o

Va2

— The system is self-organized so as to
expel the input power efficiently to
outside by adjusting spatio-temporal
structure of turbulence and also profile.




Controversial discussion on Bohm/Gyro-Bohm transition ?

Averaged heat flux GT5D code: Plasma size
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“Rigid” or “soft” approach in designing device ?

“Rigid-approach” “intermediate” “Soft-approach”
Magnetic field fully . Poloidal field : Only dia-magnetic current
determined from coil driven by current (BS-current)

e Both systems have “magnetic well”
and “magnetic shear” (a rigid system)

 However, the self-organized state
provides L-mode even with zonal flows

 How to revel new self-organization
which can sustain high pressure state



Self-organization in high pressure state : magnetic shear

[Kishimoto,Li, et al., IAEA ’02]
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Coherency and phase between E and T

OUT OF PHASE ['#0

X

(\_f|

Cl:

¥an,g

Phase difference between
potential and temperature
causes net transport

Horton Rev. Mod. Physics 71,

735 (1999).

The phase of the large scale structure
is locked so as not to cause transport
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Comparison between LHD and Heliotron J (HJ)

Magnetic fields are
designed to minimize

- Neo-classical transport

Magnetic well .
. MHD activity

= MHD-mode stable HJ-ST | LHD-L . Micro-instability and
Ry/a 7.3 0.2 turbulent transport
p=r/a 05 | 068
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Two families in Stellarator based on two key parameters

e GKV (EM) simulation (Local flux tube, trapped electron, collision )
EM-ITG mode, TEM mode, Kinetic-ballooning mode, micro-tearing mode

o Stellarator : large growth rate in HJ than that in LHD
1 \

B0 — | Wave function along

-3
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“Reciprocal relation” between linear and nonlinear dynamics

o Stellarator : lower transport (gyro-Bohm unit) in HJ than that in LHD
“Reciprocal relation” between linear and nonlinear dynamics

14 Ishizawa, Nakamura,

B ishi l. IAEA201
12 LHD-H Kishimoto et al. IAEA2016, Kyoto
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Enhanced zonal flow generation in weak shear regime

o Stellarator : large fraction of zonal flows in HJ than that in LHD
(cf. transition from turbulence dominate plasma to that of zonal flows )
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Control of secondary instability via magnetic shear

Chen, Lin, White, PoP 7, 3129, ‘00
Li and Kishimoto, PoP 12, 062308 (2005)

Modulational analysis

Zonal flow k. <<k.y

Production rate of zonal flow
increases for small magnetic shear
(via primary mode structure)

k, <<k,

streamer
generation




Recipe in breaking self-organized critical plasmas

e Weak /zero and/or magnetic
shear configuration

16MW case
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Weak/zero magnetic shear with momentum input

e Simulation condition

° magnetic shear § s 4 ! lon temperature T; |

4 ¢ d t 3!
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We compare two cases;
(A) without momentum source
(B) with momentum source at r = 90p;

ito, ICPP2016 (Taiwan), IAEA2016 (Kyoto)
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ITB formation in weak magnetic shear plasma (1)

(A) lon Temperature (B) Radial force balance
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Requirements in causing ITB formation (self-organization)

(D Flattening g-profile in the core (3‘ ~ 0) .

2 Momentum input by beam injection with co-current toroidal rotation

cf. qualitative agreement with the observations in the JET experiment

Imadera, Li, Kishimoto, ICPP2016 (Taiwan), IAEA2016 (Kyoto)



ITB formation in weak magnetic shear plasma (2)
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ITB formation in reversed magnetic shear plasma (1)

Reversed q

1 t=1600 start co-input)
- t=3200 stop co-input)

0.1

—A—: t=4000
~®-:1=4800

-0.1

R, ]‘
e — |~ 13 -0.1
zqké’pti [Ln @

O 02 04 06 08 10 0.2 04 06 08 1

t=1600
| I

1 dp;

nie 0r Qqmin € Or

kary

t=3200
|

<—

e ——d S e e e ]

3

AN SRR 4 DY)

e

r/a

r/a

The position of ITB is insensitive to the momentum source profile, which is

determined only by the g,,,;,, surface.
Imadera, Li, Kishimoto, ICPP2016 (Taiwan), IAEA2016 (Kyoto)



“Rigid” or “soft” approach in designing device ?

“Rigid-approach” “intermediate” “Soft-approach”
Magnetic field fully . Poloidal field : Only dia-magnetic current
determined from coil driven by current (BS-current)

e Both systems have “magnetic well” e A speculation : The relaxed state is
and “magnetic shear” (a rigid system) already high-B while the rigidness of
e However, the self-organized state the state is weak in order for the

provides L-mode even with zonal flows  system to be further self-organized

* How to revel new self-organization in higher heating regime.

which can sustain high pressure state e How to introduce “rigidness” to the
_ _ system which allow further self-
* A recipe: weak/zero/reversal magnetic organization

shear configuration

e Partial softening of the “rigidness” so
that the system can be self-organized
in higher heating regime

e A recipe : introduction of shell-like
field as backbone protecting closed
core plasma from various instability



“Rigid” or “soft” approach in designing device ?

e Idea, similar to nonlinear laser wake field, “Soft-approach”

i.e. Tajima-Dawson plasma field +

“rigid-approach”

Laser light
(hard photon)
shell-like field

Very stable plasma wave
traveling with laser, speed of light

which is very rigid and can stably
accelerates particles



Summary

e Transport in tokamak and stellarator is investigated using gyro-
kinetic modeling.

- (quasi-) rigid magnetic configuration with magnetic shear
- Rigid magnetic structure produces radially extended global mode
and self-similar relaxation leading to L-mode.

o A freedom for changing magnetic shear is used in
regulating transport.

- Introduction of weak/zero magnetic, which corresponds to
“softening the rigidness”, can lead to a new type of self-organization
in high pressure state.

e Combination and/or mixture between soft approach and rigid
approach is a key to exhibit self-organization for confinement
improvement.



