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• Spherical tokamak configuration and general NSTX 

transport observations (ci~ci,NC, tE~1/n) 

 

• Discussion of theoretical transport mechanisms, 

validation efforts and plans 

– Drift waves in core 

– Drift waves in H-mode edge pedestal 

– Electron transport by fast-ion-driven Alfven eigenmodes 

 

• NSTX-Upgrade & first operation 

Outline 
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• ST is naturally elongated, favorable average curvature improves MHD 

stability, allowing higher b & use of smaller BT 

Spherical tokamak (ST) has aspect ratio A<2, 
many parameters intermediate to tokamak, FRC 

Tokamak ST FRC 

A=R/a 3 1.2-2 1 

q 3-4 6-20 ~0 

b 3-10% 10-40% 100% 

r*=ri/a 1/200 1/100 1/30 

Tokamak ST FRC 
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Toroidicity drives interchange-like electrostatic 
ballooning mode instabilities on outboard side 

B, curvature 
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Ion scales (kri~1) 

• Ion temperature gradient (ITG, g~Ti) via ion compressibility (~B, ) 

• Trapped electron mode (TEM, g~Te,ne) from electron trapping (~ft) 

 

Electron scales (kre~1) 

• Electron temperature gradient (ETG, g~Te), analogous to ITG (~B, ) 

 

 

• Instabilities driven by gradients (Ti,  Te, n) surpassing thresholds which 

depend on: connection length (~qR), magnetic shear (dq/dr), temperature 

ratio (Te/Ti), additional equilibrium effects … 

 

• NOTE: in this talk I am drawing heavily on gyrokinetic theory and simulation 

results 

ITG/TEM & ETG turbulence appears to describe 
tokamak transport in many cases  
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• Short connection length  smaller average bad curvature 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

bad curvature 

good curvature 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

Orbit-averaged drift of trapped particle 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

Kim, Horton, Dong, PoFB (1993) 
ITG growth rate 

b 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal flow & 

flow shear  EB shear stabilization (dv/dr) 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

Biglari, Diamond, Terry,  PoFB (1990) 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal flow & 

flow shear  EB shear stabilization (dv/dr) 

Not expecting strong ES ITG/TEM instability (much higher thresholds) 

 

• BUT 

• High beta drives EM instabilities: microtearing modes (MTM) ~ beTe, kinetic 

ballooning modes (KBM) ~ aMHD~q2P/B2 

• Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability ~dv||/dr 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 
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NSTX (1999-2010) 

R ~0.9 m 

a ~0.6 m 

Btor  0.55 T 

Ip  1.3 MA 

PNBI/PRF  7 MW / 3 MW 

btor  40% 

Pulse 

length 
 2 s 

• Graphite PFCs 

• Lithium evaporation was available 

to condition lower divertor region 
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• Consistent with ITG/TEM stabilization by equilibrium configuration & strong EB flow 

shear 

– Impurity transport (intrinsic carbon, injected Ne, …) also usually well described by 

neoclassical theory [Delgado-Aparicio, NF 2009 & 2011 ; Scotti, NF 2013] 
 

• Electron energy transport always anomalous 

– Toroidal angular momentum transport also anomalous (Kaye, NF 2009) 

Ion thermal transport in H-modes (higher beta) usually 
very close to collisional (neoclassical) transport theory 

Courtesy Y. Ren 
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Unique Ip, BT confinement scaling, depending on 
wall conditioning 

• tE ~ Ip
0.4BT

1.0   (boronization + between-shots He GDC) 

• tE ~ Ip
0.8BT

-0.15 (between-shots Lithium evap.) – similar to ITER tE,98y2 ~ Ip
0.9BT

-0.15 

• Differences in profile shapes, ELM behavior, impurity content 

Kaye, NF (2007) 

           PRL (2007) 

           NF (2013) 

He GDC + boronization 

Between shots Lithium 
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Normalized energy confinement time scales 
favorably with collisionality in STs 

• tE ~ Ip
0.4BT

1.0   (boronization + between-shots He GDC) 

• tE ~ Ip
0.8BT

-0.15 (between-shots Lithium evap.) – similar to ITER tE,98y2 ~ Ip
0.9BT

-0.15 

• Differences in profile shapes, ELM behavior, impurity content 

Kaye, NF (2013) 

• Considering dimensionless scaling 

(~r*, q, b, n*), WcitE~n*
-0.8 b0.0 

 

• Next generation STs (FNSF, CTF, Pilot 

Plant) likely to be at lower n* 

– Will favorable n* scaling continue? 

– Hints at lower n* that ci > ci,NC 

~
W

c
it

E
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• H-mode edge pedestal – strong gradients 

• Core gradient region – inside pedestal 

• Core flat region – region of weak Te 

Going to consider three regions of the plasma 

 Susceptible to gradient-driven 

instabilities (e.g. drift-waves) 

 Must consider other mechanisms 

(e.g. driven by fast-ions) 
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Going to consider three regions of the plasma 

 

• H-mode edge pedestal – strong gradients 

• Core gradient region – inside pedestal 

• Core flat region – region of weak Te 

 Susceptible to gradient-driven 

instabilities (e.g. drift-waves) 

 Must consider other mechanisms 

(e.g. driven by fast-ions) 
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• For sufficiently small b, ES instabilities can exist (ITG, TEM, ETG)  

• At increasing b, MTM and KBM are predicted  depending on n 

– Various instabilities often predicted in the same discharge – global, nonlinear EM 

theory & predictions will hopefully simplify interpretation (under development) 

Predicted dominant core-gradient instability 
correlated with local beta and collisionality 

Local gyrokinetic 

analyses at ~2/3 radius 

Guttenfelder, NF (2013) 

MTM 

KBM 

ITG, TEM, ETG 
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• Collisionality scaling (ce,MTM~ne) consistent with global confinement 

(tE~1/n), follows linear stability trends: 

– In the core, driven by Te with time-dependent thermal force (e.g. Hassam, 1980) 

– Requires collisionality  not explicitly driven by bad-curvature 

 

Simulations of core microtearing mode (MTM) turbulence 
predict significant transport at high b & n 

sim. 
(gE=0) 

 

 
exp. 

Guttenfelder, PRL (2011), PoP (2012) 

Predicted transport 
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• Collisionality scaling (ce,MTM~ne) consistent with global confinement 

(tE~1/n), follows linear stability trends: 

– In the core, driven by Te with time-dependent thermal force (e.g. Hassam, 1980) 

– Requires collisionality  not explicitly driven by bad-curvature 

• dB leads to flutter transport (~v||dB2) consistent with stochastic transport 

 

Simulations of core microtearing mode (MTM) turbulence 
predict significant transport at high b & n 

sim. 
(gE=0) 

 

 
exp. 

Poincare plots of flux-tube surfaces 

Guttenfelder, PRL (2011), PoP (2012) E. Wang, PoP (2011) 

Predicted transport 
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MTM structure distinct from ballooning modes 

• Narrow density perturbations due 

to high-m tearing mode around 

rational surfaces q=m/n 

– Potential to validate with beam 

emission spectroscopy (BES) 

imaging [Smith, RSI (2012)] 

 

• Large dB/B~10-3 

– Potential for internal dB 

measurements via cross polarization 

scattering (UCLA collaboration) 

Predictions from MTM simulation 

Visualization courtesy F. Scotti (LLNL) 
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• Kinetic analogue of MHD high-n ballooning mode, driven by total P (aMHD) 

• Smooth transition from ITG/TEM at reduced P 

• Transport has significant compressional component (~dB||) 

At high b & lower n, KBM modes predicted; 
Sensitive to compressional magnetic (B||) perturbations 

Electron heat transport spectra from 

nonlinear gyrokinetic simulation 

Guttenfelder, NF (2013) 

exp. 

values 

(r=0.7) 

Linear growth rates 

2

0
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Electron scale turbulence measured 
and predicted at lower beta 
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“Microwave scattering” used to detect high-k 
(~mm) fluctuations 

6 ion radii 

360 electron radii 

~2 cm 

 

     

kp 

ks 

2a 

280 GHz 

probe beam 

θs 

ki 

Mazzucato, PRL (2008) 

Smith, RSI (2008) 

density fluctuations from ETG simulation 

Guttenfelder, PoP (2011) 
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• Applying RF heating to increase Te 

• Fluctuations increase as expected 
for ETG turbulence (R/LTe>R/LTe,crit) 

Correlation observed between high-k scattering 
fluctuations and Te 

E. Mazzucato et al., NF (2009) 

w*e  

direction 
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• Applying RF heating to increase Te 

• Fluctuations increase as expected 
for ETG turbulence (R/LTe>R/LTe,crit) 

Correlation observed between high-k scattering 
fluctuations and Te 

E. Mazzucato et al., NF (2009) 

• Other trends measured that are consistent 

with ETG expectations, e.g. reduction of high-

k scattering fluctuations with: 

1. Strongly reversed magnetic shear (Yuh, PRL 

2011) 

– Simulations predict comparable suppression 

(Peterson, PoP 2012) 

2. Increasing density gradient (Ren, PRL 2011) 

– Simulations predict comparable trend (Ren, PoP 

2012, Guttenfelder NF, 2013, Ruiz PoP 2015) 

3. Sufficiently large EB shear (Smith, PRL 

2009) 

– Observed in ETG simulations (Roach, PPCF 

2009; Guttenfelder, PoP 2011) 

 

w*e  

direction 
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• May require multi-scale simulations spanning ri to 

re (e.g. N. Howard, NF 2016) 

 

• New high-k scattering configuration should allow 

improved spectral coverage 

– Will allow more direct validation of streamer-like ETG 

structure (k>>kr) 

While many high-k trends correlate with ETG predictions, 
predicted transport not always sufficient 

Ren, PoP (2012) 

Old spectral 

coverage 

New spectral 

coverage 

Simulated ETG spectra 
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• Similar drift wave instabilities predicted in the H-mode edge pedestal 

H-mode edge pedestal is important 
in setting global confinement 
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• Depositing lithium between shots leads to 

reduced n, increased T (yN<0.95), improved 

confinement (& eliminates ELMs) 

• Inside yN<0.95, increased n predicted to be 

stabilizing to MTM (consistent with reduced ce) 

 

 

 

 

 

 

 

 

• Outside yN>0.95, decreased n destabilizing to 

ETG (~fixed Te) 

 

Example: H-mode pedestal influenced by Lithium 
wall conditioning 

Canik, PoP (2011) 

Canik, NF (2013) 

No Li 

With Li 
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Non drift wave mechanisms may 
also influence thermal transport 
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• Thermal-gradient-driven 
microinstabilities unlikely to 
explain flattened profiles 
– Unless substantial non-local 

effects (~r*) are important 

Max Te limited in high power H-modes,                  
 

Stutman, PRL (2009) 
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• Thermal-gradient-driven 
microinstabilities unlikely to 
explain flattened profiles 
– Unless substantial non-local 

effects (~r*) are important 

 

• High-frequency (w/Wci<1) 
Global/Compressional Alfven 
eigenmodes (GAE/CAE) 
measured [Crocker, NF 2013] 
and predicted [Belova, PRL 
2015] 

– Driven unstable by gradients 
in fast-ion phase space 

 

• How do they influence 
electron thermal transport? 

Max Te limited in high power H-modes, correlated with 
presence of Global Alfven eigenmodes (GAE) 

Stutman, PRL (2009) 
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• Computed electron orbits become stochastic with sufficient number & amplitude of 

overlapping GAE & CAE modes [Gorelenkov, NF 2010] 

• Stochastic orbits can give very large ce,st~Dr2/Dt 

The presence of a large number of GAE/CAEs 
can stochasticize electron orbits 

Gorelenkov, NF (2010); Crocker (2016) 

Tritz, APS (2012) 

• CAE’s also couple to kinetic Alfven waves (KAWs) near mid-radius  redistributes 

fast-ion energy to KAWs that damp on thermal electrons [Belova, PRL 2015] 
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NSTX-U 
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NSTX completed major upgrade in 2015 with goal of: 
2  higher BT, Ip, PNBI & 5  longer pulse length 
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NBI #1 

NBI #2 
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• First plasma August, 2015 

– Signified completion of major 

construction 

 

• First experimental run from 

January to June, 2016 

– Focus was commissioning control, 

heating and diagnostic systems 

 

• Next campaign slated to begin 

Spring of 2017 

– New capabilities, including lithium wall 

conditioning 

NSTX-U recently completed its first experimental 
campaign 
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• Rapid development of high-performance discharges in first 10 weeks of 

operation 

– Operated at reduced fields: BT0 ≤ 0.65T, Ip ≤ 1MA 

– Wall conditioning: Helium GDC + boronization 

 

Highlights from first NSTX-U experimental 
campaign 

• Stationary L-mode pulse length ~ 4 times 

longer than NSTX 

– Supported first experiments on error fields, 

transport, current drive and fast-ion physics 

– Will be useful for validating global-ES 

simulations prior to global-EM 

 

• H-mode discharges comparable to NSTX 

performance 

– Matched NSTX highest flat-top volume 

averaged pressure for Ip < 0.9MA 

1 MW NBI L-modes 

NSTX-U	

NSTX	

NSTX-U	

NSTX	

117742	
204082	

Time	(seconds)	

Plasma	current	(Mega	amps)	

Toroidal	magne c	field	(Tesla)	
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Have already observed changes in GAE stability 
using 2nd NBI sources 

• Injection of 2nd NBI modifies fast-ion 

phase space, improves stability of 

fast-ion modes [Fredrickson, APS 

2016] 

– Suppression time ~10ms 

– Observations consistent with model of 

cyclotron-resonant drive of GAE 

 

• Future experiments will probe 

GAE/CAE activity and correlation 

with Te,0 
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Summary & outlook: ST transport exhibits unique 
characteristics, challenges theory validation 

• Ion thermal transport follows collisional (neoclassical) theory 

• Energy confinement scales inversely with collisionality, tE~1/n 
 

• Numerous drift wave instabilities predicted with different scalings, 

structure 

– Local theory adds unnecessary complication – major desire for robust, 

global electromagnetic simulations (core and edge) 

• Also need to account for fast-ion driven GAE/CAE effects on ce 
 

• First NSTX-U operation completed, with significant commissioning of 

control, heating & diagnostics 

• Future transport experiments will take advantage of facility 

enhancements and improved diagnostic capabilities to validate 

transport theories and improve predictive capability 
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THANK YOU! 
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Linear microtearing instability 

• High-m tearing mode around a rational q(r0)=m/n surface (k||(r0)=0) 

 (Classical tearing mode stable for large m, D-2m/r<0) 

• In the core, driven by Te with* time-dependent thermal force  requires collisionality 

  

 Conceptual linear picture 

• Imagine helically resonant (q=m/n) dBr perturbation 

 

• dBr leads to radially perturbed field line, finite island width 

 

• Te projected onto field line gives parallel gradient 

 

• Time-dependent parallel thermal force (phase shifted, ~iw/n*ne||Te) balanced by 

inductive electric field E||=-dA||/dt with a dBr that reinforces the instability 

 

• Instability requires sufficient Te, b, ne (differences predicted in the edge) 

• Not explicitly driven by bad-curvature 
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Steady progress in error field correction, plasma control 
and NBI heating improved H-mode performance 

202946  Feb – no EFC 

203679  March – EFC v1 

202112  April – EFC v2 

202118  April – EFC v2 
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Developments in error 

field correction (EFC) 

and shape control 

enable stable operation 

at high elongation and Ip. 

 

Density control achieved  

with regular type-I ELMs. 
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• Achieved target scenario with L-H 
transition early in discharge 
– Enables highly shaped plasmas with 

periods of reduced MHD activity 
operating above no-wall stability limit 

 

 

H-mode consistent with NSTX performance operating 
above no-wall limit with minimal MHD activity 

DCON	

Above	no-wall	limit	

Below	

Composite	no-wall	limit	model	

DCON	

Above	no-wall	limit	

Below	

Composite	no-wall	limit	model	

Shot 204112, n=                     
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Improvements in the plasma shape control enabled the 
development of high-performance discharges  

• Vertical stability is more challenging 

at higher aspect ratio (A) 

– Motivated improved detection of vertical 

plasma motion 

– Achieved NSTX elongation at matched li, 

despite larger aspect ratio 
 

• Larger change in the ohmic fringe field contribution to the equilibrium field  

– Requires active control of the X-point location  not a routine tool on NSTX 

– Multi-threaded rtEFIT enables equilibrium at larger grid resolution and including wall 

currents 
 

• Diverting and maintaining an inner gap more challenging at higher A 

– Conventional tokamaks have inboard coils, whereas STs do not 

– Actuator sharing algorithm allows the inboard gap to be controlled with adjustments to the 

X-point and outboard gap requests. 

Internal Inductance 

E
lo

n
g
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o
n

 

NSTX-U, Boronized 
NSTX, Lithium 
NSTX, Mixed 

NSTX, Boronized 


