

## Overview of Tri Alpha Energy's Experimental Program and Recent Progress on Transport Analysis

#### Erik Trask For the TAE Team

Tri Alpha Energy, Inc., Rancho Santa Margarita, CA 92688, USA 2016 US-Japan Workshop on Compact Torus August 22-24, 2016 Irvine CA, USA

# Outline

### Introduction:

Field-reversed configurations (FRCs); Concept; Project goals

### C-2U Accomplishments:

Sustained plasmas, driven by beams

- Confinement and Scaling
- C-2W Project Vision
  - Goals, parameters, upgrades

### Summary



# Outline

### Introduction:

Field-reversed configurations (FRCs); Concept; Project goals

### C-2U Accomplishments:

Sustained plasmas, driven by beams

- Confinement and Scaling
- C-2W Project Vision
  - Goals, parameters, upgrades

Summary



# FRCs and Tri Alpha Energy's (TAE) Concept





- High plasma β ~ 1
  - compact and high power density
  - aneutronic fuel capability
  - indigenous kinetic particles

#### Simple geometry

- only diamagnetic currents
- simpler design & maintenance

#### Linear unrestricted divertor

- facilitates impurity, ash and power removal
- Tangential neutral beam injection
  - large orbit ion population
  - improve stability and transport

Fast ions

- decoupled from micro turbulence
- slow down at near classical rates



# **TAE's Present Goals and Focus of Efforts**

- **Establish beam-driven high-***β*, large orbit FRC physics test bed to:
  - provide fast learning cycles and large experimental dataset (~51,000 shots)
  - demonstrate sustainment via neutral beam injection (NBI) for >5 ms (longer than critical timescales) with high repeatability
  - study tangential NBI and fast particle effects on stability and transport
  - measure scaling and study fluctuations and transport
- Test for failure early and at reduced cost while reducing most critical risks
- Provide opportunity to
  - b tightly integrate theory/modeling with experimentation
  - develop engineering knowhow and integration
- Invite collaboration to accelerate progress
  - Budker Institute, PPPL, UCI, UCLA, LLNL, Univ. of Pisa, Univ. of Wisconsin, Nihon Univ., Univ. of Washington, Industrial partners



### C-2U Research Facility to Study Sustainment of Advanced Beam-Driven FRCs



Presenter: Erik Trask

'RI ALPHA ENERGY

THE POWER OF INGENUITY

# **Outline**

#### Introduction:

Field-reversed configurations (FRCs); Concept; Project goals

#### C-2U Accomplishments:

Sustained plasmas, driven by beams

- Confinement and Scaling
- C-2W Project Vision
  - Goals, parameters, upgrades

Summary



 C-2: Addition of magnetic plugs and plasma guns extend lifetimes to over 2ms in 2012



**Presenter: Erik Trask** 

C-2: Lithium gettering and decreased recycling lead to pressure increases in 2014



THE POWER OF INGENUITY

2016 US-Japan Workshop on Compact Tori August 22-24, Irvine, CA USA

 C-2U: Lifetimes of 5+ ms achieved with higher beam power and SOL B field changes in 2015. Beam effects are evident in profiles.



C-2U: Sustainment achieved after only 3 months of operations! 



THE POWER OF INGENUITY

2016 US-Japan Workshop on Compact Tori 11 August 22-24, Irvine, CA USA

THE POWER OF INGENUITY

C-2U produces advanced beam-driven FRCs via NBI, sustained for 5+ ms, with up to 11 ms lifetimes



### **Plasma Sustainment – Correlates with NB-duration**

Key plasma parameters maintained until end of NB pulse-duration

Diamagnetism persists ~1.5–2.5 ms after NB termination (by accumulated fast-ions)



TRI ALPHA ENERGY

### **C-2U Fast-Particle Effects – Fast Ion / Thermal Pressure**

#### Signatures of advanced beam-driven FRC state



**Dominant fast ion pressure term** (See R. Magee's talk for more details)

- total pressure is maintained
- ultimately ~50–60% of thermal pressure replaced by fast particle pressure

# **Outline**

### Introduction:

- Field-reversed configurations (FRCs); Concept; Project goals
- **C-2U Accomplishments:** 
  - Sustained plasmas, driven by beams

### Confinement and Scaling

- C-2W Project Vision
  - Goals, parameters, upgrades

Summary

## C-2 to C-2U: Energy Confinement Times Improved

| Time Window:<br>0.3-1.5ms | C-2<br>(HPF14) | C-2U<br>Sustainment |
|---------------------------|----------------|---------------------|
| Beam Power                | 4.8 MW         | 10.8 MW             |
| $\tau_{E}$                | 0.65 ms        | 1.15 ms             |
| τ <sub>E,ions</sub>       | 1.1 ms         | 3.8 ms              |
| $\tau_{E,electrons}$      | 0.14 ms        | 0.22 ms             |
| <t<sub>e&gt;</t<sub>      | 90 eV          | 116 eV              |
| <pressure></pressure>     | 3.3 kPa        | 3.9 kPa             |

#### C-2U confinement times: ~2 x C-2

- Primary improvement in particle confinement and electron conduction channel
- Total pressure and core T<sub>e</sub> increased with beam power
  - Larger differences later in time as beams build up
- Pace of improvements is increasing due to many cycles of learning



### **Coupled Core-SOL Confinement Effects**

- Improving open-field-line plasmas key for better core FRC confinement
- 20–30% higher Core T<sub>e</sub> with flaring divertor magnetic field
- Enhanced ExB shearing improve confinement and additional heating



## Electron Confinement Time Is Strongly Correlated With *T*<sub>e</sub>



C-2 and C-2U eras have good agreement

> Only major change was increased beam power



## **Electron Confinement Time Is Strongly Correlated** With *T<sub>e</sub>*



C-2 and C-2U eras have good agreement

- > Only major change was increased beam power
- Regression gives temperature exponent of 1.8

## Electron Confinement Time Is Strongly Correlated With *T<sub>e</sub>*



C-2 and C-2U eras have good agreement

- Only major change was increased beam power
- Regression gives temperature exponent of 1.8
  - Very different than Bohm-type scaling

## Transport Scaling Over C-2 and C-2U Datasets Has Positive Trend With Electron Temperature



| Power Law:       | <b>T</b> <sub>e</sub> | B <sub>e</sub> | <b>R</b> <sub>s</sub> | <b>R</b> <sup>2</sup> |
|------------------|-----------------------|----------------|-----------------------|-----------------------|
| τ <sub>Ε,e</sub> | $1.8 \pm 0.12$        | $-1.3 \pm 0.3$ | 1.0 ± .15             | <u>0.68</u>           |

 Anomalous electron losses model differs greatly from Bohm-type scaling



## High-β ST And TAE Scaling Is Remarkably Similar



- Scaling from NSTX and MAST compares well with TAE results TAE:  $\tau_{E,e} \approx T_e^{1.8} R_s / B^{1.3}$ ST:  $\tau_E \sim 1/(Bv^*) \approx T_e^2 / Bn_e$
- Common features of STs and FRCs include:
  - High plasma beta
  - Magnetic field and pressure gradients that oppose each other

# **Outline**

### Introduction:

- Field-reversed configurations (FRCs); Concept; Project goals
- C-2U Accomplishments:
  - Sustained plasmas, driven by beams
- Confinement and Scaling

### C-2W Project Vision

Goals, parameters, upgrades

### Summary



## **C-2W Goals and Expected Parameters**

- 1. Improve performance of the plasma edge and divertor to achieve high electron temperature at the plasma edge.
- 2. Develop plasma control on the time scale significantly longer than L/R vessel time and plasma confinement times and demonstrate plasma controllable ramp.
- 3. Explore a wide range of plasma parameters such as plasma temperature, magnetic field and plasma size to confirm TAE  $au_E$  energy confinement scaling.

|      | (Te <i>,</i> Ti)       | Magnetic Field | Pulse Length | Diagnostic Count                   |
|------|------------------------|----------------|--------------|------------------------------------|
| C-2U | (0.1 <i>,</i> 0.5) keV | 0.7-1.1 kG     | Up to 11ms   | ~60 types<br>~1Gb / shot of data   |
| C-2W | (1, 2) keV             | 1-3kG          | Up to 30ms   | >25 new/modified<br>5-10 Gb / shot |



## C-2W: Next Device at 10x Stored Energy at TAE





**Presenter: Erik Trask** 

## **C-2W: Under Construction Now!**





Presenter: Erik Trask

### **Upgrade Example: Switchable Beams**



- Ramp up of equilibrium magnetic field allows operation at higher beam energy
  - Orbits are well confined
- Variable energy beams maximize power into FRC core
  - Heating, current drive, build up of fast particle pressure

| Parameter                                            | C-2U | C-2W<br>phase 1 | C-2W<br>phase 2                 |
|------------------------------------------------------|------|-----------------|---------------------------------|
| Fixed-energy injectors                               | 6    | 8               | 4                               |
| Switchable energy injectors                          | 0    | 0               | 4                               |
| Beam energy, keV                                     | 15   | 15              | 15/ <mark>40</mark>             |
| lon current per source, A                            | 130  | 130             | 130                             |
| Pulse duration, ms                                   | 8    | 30              | 30                              |
| Power in neutrals through the port, per beamline, MW | 1.7  | 1.7             | 1.7 @15keV<br><b>3.5 @ 40kV</b> |
| Total NB power, MW                                   | ~10  | ~13             | ~21                             |



### **Upgrade Example: FIR Interferometry**

#### C-2W Mid-Plane Laser Interferometer:

14 Chords of Far Infrared (FIR) laser at 433 μm.

Phase Shift :  $\phi_I = 2.81 \times 10^{-15} \lambda \int n_e dl$ 

High sensitivity and full coverage into the scrape-off layer.

#### Polarimetry Function



Faraday Rotation Angle:  $\psi_F = 2.62 \times 10^{-13} \lambda^2 \int n_e B_{//} dl$ 

Excellent sensitivity to  $B_{\theta}$ 

7 tilted chords provide a chance to measure  $B_z$  via Faraday rotation



Courtesy – B. Deng and M. Beall

Presenter: Erik Trask

## Summary – Essential C-2/C-2U Accomplishments

#### High-Performance FRC (HPF) regime demonstrated

- edge biasing, neutral beams and gettering produce HPF regime with excellent shot-to-shot reproducibility
- record FRC lifetimes (~11 ms) are only limited by transport
- beneficial emerging confinement scaling with coupled core-SOL transport

#### Advanced beam-driven FRC sustainment breakthrough

- current drive and plasma sustainment in excess of characteristic system and plasma time scales, correlated w/ NB pulse – 5+ ms
- performance limited by hardware and stored energy constraints

#### Compelling foundation for success with C-2W

- hardware changes will improve SOL temperatures
- b diagnostic expansion will characterize equilibria and power flows
- scaling of confinement timescales will be extended



