

Suppressed Ion-Scale Turbulence in the C-2/C-2U FRC: Recent Experimental and Simulation Results

L. Schmitz (UCLA, TAE)

with

C. Lau, D. Fulton, I. Holod, Z. Lin (UCI), T. Tajima, M. Binderbauer, H. Gota (TAE), and the TAE Team

US-Japan CT Workshop August 22-24, 2016 Irvine, CA

Outline

Introduction

- Turbulence properties experimental characterization
- Gyrokinetic simulations in the C-2 FRC Core and SOL
- Critical gradient, control of radial electric field via divertor biasing; radial transport barrier

Summary

FRC Geometry / C-2 Parameters

Typical C-2/C-2U Parameters

	FRC Core	SOL
Density (10 ¹⁹ m ⁻³)	2-4	0.5-2
T _i (eV)	600-1000	≤ 250
T _e (eV)	≤ 150	30-80
B _e (Gauss)		≤ 1200
Sep. Radius (cm)	35-45	
Neutral Beam Power	≤ 10 MW (C-2U)	

FRC Radial and Parallel Transport

Turbulence/Transport Analysis Towards Predictive Capability

TRI ALPHA ENERGY

Outline

Introduction

Turbulence properties – experimental characterization

- Gyrokinetic simulations for the C-2 FRC Core and SOL
- Critical gradient, control of radial electric field via divertor biasing; radial transport barrier

Summary

Schematic and Principle of Doppler Backscattering Diagnostic (DBS)

DBS provides local density fluctuation level $\tilde{n}(r)/n(r)$ vs. k_{θ} - here $k_{\theta} \sim 0.5$ -12 cm⁻¹ ($k_{\theta}\rho_{s} \sim 1$ -40)

ExB velocity from Doppler shift of backscattered signal: $\omega_{Doppler} = v_{turb} k_{\theta} \sim v_{ExB} k_{\theta}$

 \rightarrow **v**_{ExB} ~ $\omega_{\text{Doppler}} / 2k_i$

TRI ALPHA ENERGY

Radial Density Profile and DBS Probing Radii

TRI ALPHA ENERGY

Density Fluctuations Peak Outside Separatrix Very Low Fluctuations in FRC Core

- Fluctuation levels peak outside the separatrix
- Very low fluctuation levels in the FRC core

FRC Core Plasma: Unique Inverted Wavenumber Spectrum; No Ion-range Modes

- FRC Core: Decreased Fluctuations; Inverted Spectrum at low kρ_e
- Spectrum extends to kρ_e > 0.3: Only unstable electron modes!

- SOL: Ion and electron-scale modes
- Broad exponential spectrum: (ñ/n)² ~ exp (-0.32 k_θρ_s)

Outline

Introduction

Turbulence properties – experimental characterization

Gyrokinetic simulations for the C-2 FRC Core and SOL

Critical gradient, control of radial electric field via divertor biasing; radial transport barrier

Summary

GTC (Gyrokinetic Toroidal Code) Simulations

First-principles, integrated microturbulence simulations; adapted for FRC geometry (Boozer coordinates)

Includes gyrokinetic or kinetic ions, fluid or drift-kinetic electrons; local/global simulations, electromagnetic effects Fokker-Planck-collisions

Useful for testing reduced transport models and for predictive transport modeling

Input: Calculated FRC equilibria based on experimental parameters Presented here: Results from linear, electrostatic flux-tube simulations, separate calculations for the FRC core and SOL

Upgrades in progress: Coupled SOL/core, kinetic ions, nonlinear runs:

Much more detail in talk by C. Lau in this session

Simulation Geometry, Parameters

Core and SOL local simulation: Realistic C-2 Equilibrium Periodic boundary conditions in z and θ Gyrokinetic ions (D) and electrons, includes collisions $v_{e,i}^* = v_{e,i}/v_{transit} <<1$ (>>1)

No Ion-Scale Instabilities Found in FRC Core by Local Electrostatic GTC Simulations

- No instabilities found for realistic $R/L_n < 5$ (limit of $L_n \sim \rho_i$)
- Instability found only by removing electron kinetic effects or by artificial elongation of core equilibrium:

- Experiment detects small core fluctuations. Possible reasons...
 - Core is locally stable but turbulence can spread from SOL
 - Important physics may be missing (by using gyrokinetic and/or electrostatic assumptions).

SOL: Ion-Range Modes Suppressed via FLR Effects, Spectrum Extends to Electron Mode Regime

• Predicts no instability below $k_{\theta}\rho_s < 2$ Spectrum extends to $k_{\theta}\rho_e > 0.3$ Low-k ion modes weak/absent due to FLR* effects*

*Rosenbluth, Kall and Rostoker, NF Suppl. pt1, 143 (1962)

FLR Effects Reduce the SOL Growth Rate Substantially

TEM and Drift/Interchange Modes

Instability to $1/\eta_i = 0$

Outline

Introduction

- Turbulence properties experimental characterization
- Gyrokinetic simulations for the C-2 FRC Core and SOL
- Critical gradient, control of radial electric field via divertor biasing; radial transport barrier

Summary

Measured SOL Critical Density Gradient Similar to Predicted Linear Instability Threshold

Passive/Active Biasing Schemes Explored

E×B Shear Increases the SOL Critical Gradient

- Density profile time history
- SOL fluctuations increase once critical density gradient is exceeded
- Radial density gradient increases after ~0.5 ms (SOL is depleted)
- Fluctuation decrease once E×B shearing rate increases and exceeds the turbulence decorrelation rate:

 $ω_{E\times B} > Δω_{\Delta}$ (Biglari, Diamond, Terry, Phys. Fluids B1,1989)

The radial correlation length deceases with increasing E×B shear

Passive/Active Biasing Schemes Explored

LaB₆ Cathode-Anode assembly

LaB₆ Chamber and cathode assembly

Cathode Electron Emission Current Substantially Exceeds Ion Saturation Current

Radial Potential / Density Profiles Clearly Show that E_r (Shear) Reduces Radial Transport

- Strongest radial electric field outside cathode radius:
 - $E_r \le 9.5 \text{ kV/m}$

(mapped to C-2U midplane)

- Active biasing dramatically reduces outer SOL density
- Active biasing increases SOL density gradient

Radial Potential Well and Increased Density Gradient Develop 0.5-1 ms into Discharge

Mapped E×B Velocity Radial Profile with Active Biasing: High Mach number, Large Flow Shear

- Mapped Triple Probe (TP) data matches Doppler Backscattering (DBS) midplane data (within error margins)
- Maximum E×B shearing rate just outside R_s (excluded flux radius):

 $\omega_{E \times B} \le 5 \times 10^6 \text{ rad/s}$

Mach number M ≤ 1 for electron E×B flow lon E×B velocity perhaps lower due to FLR effects

 $T_{cath} \sim 1650^{\circ}C$ $I_{cath} \sim 2.5 \text{ kA}$

Summary

- C-2 FRC core: Ion-range modes stable due to FLR effects
- GTC simulations reveal unstable FRC Core modes only for unrealistically large gradients or for artificially elongated plasmas (θ-pinch equilibrium)
- Multi-scale SOL turbulence observed/predicted (TEM and Resistive drift waves); driven by ∇n , ∇T_e
- Strong evidence of SOL radial transport barrier with passive and active biasing. No evidence of sustained large-scale radial streamers (radial corr. length λ_r < ρ_i)
- Observed critical SOL density gradient compares well with predicted linear instability threshold; compatible with required reactor SOL width

Thank you for your attention!

