
Electrostatic drift-waves in the FRC: 
destabilized in the scrape-off layer, 

robust stabilization in the core
Calvin K Lau1, 

D. P. Fulton2, J. Bao1,  I. Holod1, Z. Lin1, M. Binderbauer2, T. Tajima1,2, and L. Schmitz3

1University of California, Irvine
2Tri Alpha Energy, Inc. 

3University of California, Los Angeles 

US-Japan Workshop on Compact Tori August 22, 2016



Outline

1. Simulation code and parameters

2. Core stability

3. Scrape-off layer instability

4. Coupled Core-SOL and Fully Kinetic Ions

– Calvin Lau: CT Workshop 2016 – 2/25



Gyrokinetic Toroidal Code (GTC) for FRC simulations

GTC is a first-principles, integrated 
simulation code which has been extensively 
used for simulations of kinetic-MHD 
processes such as microturbulence, 
energetic particles, magneto-
hydrodynamics (MHD), neoclassical effects, 
and RF heating/current drive

➢Upgrades for FRC simulations

○ Realistic C2 equilibrium

○ Wedge poisson solver

○ Core-SOL coupling

➢Capabilities include
○ General 3D geometry & 

experimental profiles

○ Kinetic electrons & 
electromagnetic fluctuations

○ Gyrokinetic or fully kinetic ions

○ Equilibrium current

○ Neoclassical effects

○ Multi-level, hybrid-MPI/OpenMP 
parallelization up to 105 cores

○ Ported to GPU (titan) & MIC 
(tianhe-2)
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Realistic C-2 FRC equilibrium
➢Realistic C-2 model equilibrium provided by S. 

Dettrick via modified ‘Lamy-Ridge’ equilibrium 
code translated  into field-aligned mesh in 
Boozer Coordinates 

➢Local simulation geometry (worst case senario)
○ Periodic in θ

○ Local in ψ (kζ≫kr), dashed cyan lines

○ Periodic in ζ

➢Core and SOL only simulated separately* in 
work shown in this talk (new capabilities for 
core-SOL coupling developed and verified)

* D. Fulton et al, “Gyrokinetic particle simulation of a field reversed 
configuration”, Phys. of Plasma 23, 012509 (2016)
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Simulation Parameters
➢ Gyro-kinetic deuterium and electron (with Fokker-Planck collisions) 

➢ Ti / Te=5, κ =
R0

Ln
,  𝜂𝑒 = 𝜂𝑖 = 𝜂 =

𝐿𝑇

𝐿𝑛
= 1

➢ Validity of gyrokinetic model is marginal; fully kinetic ion model being developed 

– Calvin Lau: CT Workshop 2016 – 5/25

Core SOL

ne(cm-3) 4.0x1013 2.0x1013

Ti(eV) 400 200

𝜌e(cm) 0.044 0.016

𝜌i(cm) 5.98 2.15

R0/CS(𝜇s) 1.78 2.51



Current Progress

1. Simulation code and parameters

2. Core stability

3. Scrape-off layer instability

4. Coupled Core-SOL and Fully Kinetic Ions
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No instability found in realistic C-2 core

• No instability found* for kζρe ≤ 0.3, η = 1, κ ≤ 5

• Consistent with experimental measurements of low amplitude of core 

fluctuations

• Stabilized by 

 Ion finite larmour radius effects (FLR)

Magnetic well (radially increasing B-field)

Electron parallel dynamics (shown via artificial elongation of core, 

or by slowing down electrons via artificial increase of electron mass)

– Calvin Lau: CT Workshop 2016 – 7/25

* D. Fulton et al, “Gyrokinetic Simulation of Driftwave Instability in Field Reversed Configuration”, Phys. of Plasma 23, 056111 (2016)

http://dx.doi.org/10.1063/1.4948285


What causes the fluctuations?

•No instability found for kζρe ≤ 0.3, η = 1, κ ≤ 5

•Mentioned stabilization mechanisms are FRC traits 

However, does not mean core has no instabilities because…
• Gyro-kinetic assumption may pre-clude necessary physics of 

core instability (fully-kinetic ion model + coupled core-SOL)
• Electrostatic assumption may pre-clude necessary physics of 

core instability (electromagnetic fluctuations)
• Specific C-2 magnetic equilibrium model
• Turbulence spreading from SOL
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Current Progress

1. Simulation code and parameters

2. Core stability

3. Scrape-off layer (SOL) instability

4. Coupled Core-SOL and Fully Kinetic Ions
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Unstable ion-to-electron-scale modes in C-2 SOL

• Frequency in the electron 
diamagnetic drift and 
electron curvature drift 
direction

• As drive strength 
decreases, mode shifts 
toward shorter 
wavelengths

• Studied effects: particle 
resonances, Ti/Te, 𝜂𝑒, 𝜂𝑖 , 
FLR, 𝛁B, collisions* 
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SOL linear thresholds are consistent with experiment

Simulation Experiment
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* L. Schmitz et al, “First evidence of suppressed ion-scale turbulence in a hot high-β plasma”, in press (2016)



Phase space shows clear electron resonance
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➢Resonance due to barely-
trapped electrons appear as 
figure-8 structure shape in 
𝜃 − 𝑣∥ phase space 

➢Mode structure travels in the 
electron diamagnetic 
direction

➢Mode structure anti-
correlated with magnetic field

R



Electron bounce motion resonates with mode
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Electron temperature gradient is de-stabilizing

• Scans performed for different 
values of η (density gradient drive 
strength kept constant while 
temperature gradients are varied)

• Ion temperature gradient is 
stabilizing

• Higher Ti/Te temperature ratio 
is stabilizing

• Electron temperature gradient 
is destabilizing

• Can be attributed to the 
modification of the electron 
phase space structure
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Finite Larmour radius (FLR) and grad-B are stabilizing effects

• kζρi = 1.37 (n=25) 
scanned with and 
without FLR and grad-B 
effects

• FLR is more stabilizing 
than grad-B

• However, for marginal 
stability, both will be 
important 



• Pitch-angle scattering 
stabilizes the 
instability 

 electrons scattered 
from resonant energy-
pitch trajectory

• Collisionless case is 
recovered as collisions 
are reduced
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Electron collisions suppress the SOL instability



Collisional instability can still exist

• Barely trapped 
electron driven 
branch stabilized by 
collisions

• Collisional branch can 
still exist in shorter 
wavelengths 
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Summary of current progress*

• Core is stable

• Stabilizing: FLR, magnetic well, electron parallel dynamics

• Collisionless instability in SOL

• Driven by barely trapped electrons

• Destabilizing: electron-temperature gradient, density gradient

• Stabilizing: collisions, higher temperature ratio, FLR, 𝛻B, ion temperature gradient

• Collisional instability can also exist

• SOL linear thresholds in simulations consistent with experimentally 

measured fluctuation thresholds

* C.K. Lau et al, “Drift-wave Stabilities in the Field-Reversed Configuration”, submitted to Nucl. Fusion
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4. Coupled Core-SOL and Fully Kinetic Ions

– Calvin Lau: CT Workshop 2016 – 19/25



Cross-separatrix simulations (ANC)

– Calvin Lau: CT Workshop 2016 – 20/26

• Inherits algorithms from GTC; modularly 
designed

• Numerical FRC geometry from LamyRidge
• Drift kinetic particle pusher in 𝑅, 𝑍, 𝜁

parallelized by MPI
• Parallelized (PETSc/Hypre) field solver, 

(2D spatial: R,Z; 1D spectral: 𝜁)
• Verified: (1) ion acoustic wave and (2) 

driftwave frequencies in simple geometry, 
(3) driftwave frequency in realistic FRC 
geometry



Fully kinetic ions are also underway
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• Implemented fully kinetic ion & drift kinetic electron (FKi/DKe) in GTC

• Verified: Boris push & Runge-Kutta for integrating ion cyclotron orbit in 
realistic FRC geometry using cylindrical coordinates

• Next: self-consistent driftwave simulation with fully kinetic ions



End of talk
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