Laboratory studies of magnetic reconnection: How can they be applied to CT research?

Masaaki Yamada* August 23, 2016

US-Japan CT Workshop

In collaboration with Jongsoo Yoo

Motivation and Contents

- Magnetic reconnection is known for efficient conversion of magnetic to particle energy.
- Identification of mechanisms for the energy conversion has not been made while it has been a central problem.
- Is there a fundamental principle for energy partitioning in a proto-typical reconnection layer?
- How can the results be applied to CT Research?

Nature Comms, **5**, 4774 (2014) Phys. Plasmas, **23**, 055402 (2016)

Energy Conversion in the Sweet-Parker Model

2-D, resistive MHD model

• Plasma heating occurs slowly on Ohmic dissipation inside the diffusion region.

$$\frac{B_{in}^2}{\mu_0} \rightarrow Wp + \frac{\rho}{2} V_s^2$$

Experimental Setup and Formation of Current Sheet on MRX

 n_e = 1-10 x10¹³ cm⁻³, T_e~5-15 eV, B~100-500 G,

How is magnetic energy converted to plasma?

Experimental set-up [Yoo et al, 2013]

- Helium discharge
- IDSP to measure T_i
- $\lambda_{mfp,e} \ge c/\omega_{pi} > \delta_{CS}(\sim 2cm)$

Two fluid regime

Measurement of energy inventory in MRX

• Energy transport equation :

$$\frac{\partial}{\partial t} \left[\frac{B^2}{2\mu_0} + \sum_{s=e,i} \left(\frac{3}{2} n_s T_s + \frac{\rho}{2} V_s^2 \right) \right] + \nabla \cdot \left[\vec{S} + \sum_{s=e,i} \left(\frac{5}{2} n_s T_s \vec{V}_s + \frac{\rho}{2} V_s^2 \vec{V}_s \right) + q_s \right] = 0$$

Birn and Hesse, 2005

Inventory of Energy

Yamada et al, Nature Communications (2014)

Particle dynamics of the two-fluid reconnection layer

Electron dynamics and electron heating in MRX

The physics of the high energy deposition rate is not yet resolsved.

A large in-plane electric Hall field verified in the MRX reconnection layer due to two-fluid effects.

Ion acceleration and heating in the reconnection layer

Ion heating is attributed to re-magnetization of accelerated ions

Size of potential drop can be analytically estimated

Yamada et al, PoP (2016)

$$E_R \approx V_{ey} B_Z - \frac{1}{e n_e} \frac{\partial p_e}{\partial R}$$
 (1)

$$\Delta \Phi_p \approx \frac{B_{sh}^2}{2\mu_0 e \langle n_e \rangle} - \Delta T_e \qquad (2)$$

Equation of motion for electrons

After integrating (1) w.r.t. R

 Is there a fundamental principle for energy partitioning in a proto-typical reconnection layer?

Energy Conversion in Two-fluid Reconnection: lons gains energy primarily on the separatrices

$$W_{ion} \sim L_i V_{in} n_e e < \delta \Phi > \sim L_i V_{in} \frac{B_{sh}^2}{2\mu_0}$$
$$W_M \sim L_i V_{in} \frac{B_{sh}^2}{\mu_0}$$
$$W_{ion} / W_M \sim 1/2$$

As large as 50% of incoming magnetic energy is converted to particle energy of ions

Energy Conversion in Two-fluid Reconnection: Energy deposition to electrons only occurs at the e-diffusion region

We use Sweet-Parker model for electron heating/bulk acceleration

$$W_{e} \sim L_{e} V_{in} \frac{B_{sh}^{2}}{\mu_{0}} = > \frac{W_{e}}{W_{M}} \sim \frac{L_{e}}{L_{i}} \sim \frac{1}{4}$$
$$W_{M} \sim L_{i} V_{in} \frac{B_{sh}^{2}}{\mu_{0}}$$

Only a fraction of incoming magnetic energy is converted to particle energy of electrons

2D PIC simulation on energetics; by J. Jara Almonte and W. Daughton

The energy partitioning does not strongly depend on the size of monitoring boundary

MRX data is compared with simulations and space data

	Magnetic energy Inflow	Magnetic Energy outflow rate	Energy deposition to ions	Energy deposition to electrons
MRX Data	1.0	0. 45	0.35	0.20
Numerical simulation	1.0	0. 42	0.34	0.22
Magnetotail data (Eastwood)	1.0	0.4	0.39	0.18

- Enthalpy flux dominates in the down flow region
- Magnetic energy outflow substantial

Energy deposition to ions is generally larger than to electrons. With the electrons' heat transport loss is larger than that of ions', $\Rightarrow T_i \gg T_e$ Very important for reconnection in CT plasmas

Strong ion heating is observed during sawtooth reconnection in RFP

Spheromak Merging Experiments in MRX (Toroidal Energy => Plasma Kinetic Energy)

(1)

Spheromak Merging Experiments in U. Tokyo (Toroidal Energy => Plasma Kinetic Energy)

TS-3; Yamada et al PRL (1990) Ono et al PRL(1996)

Norman's 70 year Symposium (1995)

FLARE (Facility for Laboratory Reconnection Experiment) Ji (PI) et al

Parameters	MRX	FLARE	
Device diameter	1.5 m	3 m	
Device length	2 m	3.6 m	
Flux core major diameters	0.75 m	1.5 m	
Flux core minor diameter	0.2 m	0.3 m	
Stored energy	25 kJ	4 MJ	
Ohmic heating/ drive	No	0.3 V-s	
Outer driving coil	Yes	Yes	
Inner driving coil	No	Yes	
S (anti-parallel)	600-1,400	5,000-16,000	
$\lambda = (Z/\delta_i)$	35-10 100-30		
S (guide field)	2900	100,000	
$\lambda = (Z/\rho_S)$	180	1,000	

Summary

- Energy partitioning are quantitatively analyzed in the MRX reconnection layer
- This result is consistent with theory for the dynamics of two-fluid reconnection layer with a single X-line geometry
 - Energy deposition to electrons occurs near the X-point through $j_{\perp e} E_{\perp}$
 - Energy deposition to ions occurs near the separatrices through $j_{\perp i}E_{\perp}$
- Based on the MRX data and analytical consideration, we conclude a fundamental principle for energy partitioning in a proto-typical reconnection layer.
 - Substantial component of outgoing magnetic energy (~ 50%) in the Hall reconnection
 - $\sim 50~\%$ of incoming magnetic energy can go to plasma particles
- The results have an important message to CT research During two-fluid magnetic reconnection, a significant amount of E field is generated and magnetic energy is converted to ions kinetic energy.