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Introduction & Background 
FRC / Counter-helicity Spheromak Merging
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(photo) ST merging in UTST

The characteristics of Counter-helicity Spheromak Merging 
・Spheromak formation is easier than forming an FRC by Field-Reversed Theta Pinch method. 
・Spheromaks can get large magnetic flux by a MCPG (CHI) or a flux core. → easy to get a large flux FRC 

・magnetic reconnection with zero guide-field & reconnection with both poloidal and toroidal magnetic field. 
・Non-MHD effects, such as Hall effect or toroidal effect on merging  process are not fully understood.
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Introduction & Background 
Ion flow in high-beta relaxation
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E. Kawamori et al., Nucl. Fusion (2005)
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and effective velocities,
U1 ≠ V 2 === 3 B, U2 ≠ V . (8)

The first equation is the induction equation with the
difference that we do not neglect === 3 B s, Jd with
respect to V as is often done in MHD. This departure
from the standard one-fluid treatment is crucial; it is
the source of the === 3 === 3 B term in Eq. (11), and
hence of the possible diamagnetic structures. The second
equation is the Lorentz force equation which also includes
the standard fluid force V 3 s= 3 Vd. Let us introduce
Ûj ≠ Uj 2 mjVj s j ≠ 1, 2d, and rewrite (6) as

≠Vjy≠t 2 = 3 sÛj 3 Vjd ≠ 0 s j ≠ 1, 2d , (9)
where m1 and m2 are scale parameters that can be consid-
ered as intensives in a possible thermodynamic interpre-
tation (to be discussed later). The simplest equilibrium
solution to (9) is Ûj ≠ 0 s j ≠ 1, 2d, or equivalently the
system of linear equations in B and V (a ≠ 1ym1 and
b ≠ 1ym2)

B ≠ asV 2 = 3 Bd ,

B 1 = 3 V ≠ bV ,
(10)

which describes, explicitly, the strong coupling between
the magnetic and the fluid aspects of the plasma. It is
from this coupling that new physics is expected to arise.
Equations (10) can be combined to yield, in either V or
B, the second order partial differential equation [a ≠
b 2 s1yad and b ≠ 1 2 bya]

= 3 s= 3 Bd 2 a= 3 B 1 bB ≠ 0 , (11)
which, will, naturally lead to magnetic field (and flow
velocity) structures far richer than the ones contained in
the “constant-a Beltrami-Taylor” (BT) system.
The equilibrium solution (10), when substituted into (2)

and (3) leads to the Bernoulli conditions =sbe 1 ĝed ≠
0 ≠ =sbi 1 gi 1 V 2y2d suggesting a mechanism for
creating pressure sbd gradients in this extended relaxed
state. In the simplest case s ĝ1 ≠ 0 ≠ ĝed,

bi 1 0.5V 2 ≠ constant, (12)
revealing that an appropriate sheared velocity field can
sustain a desired ion pressure gradient. Equations (11)
and (12) will serve as a basis for designing a highly
effective plasma confinement machine. We note that:
(1) The set of equations (10) can be derived by

following the Taylor prescription of relaxed equilibria
applied to (9), which allows two bilinear constants of
motion, the usual total magnetic helicity h1 ≠ 20.5

R
A ?

B d3x, and the generalized helicity h2 ≠ 0.5
R

sA 1 Vd ?
sB 1 = 3 Vd d3x [3]. Minimization of the total energy
E ≠ 0.5

R
sB2 1 V 2d d3x with the constraints of constant

h1 and h2 will directly lead us to (10). The constants a
and b are related to the Lagrange multipliers needed in the
constrained minimization. The approach of constrained
minimization of an appropriate free energy has been used
by many authors [4–6] to generalize the BT system

especially with the idea of imparting a finite pressure and
a finite flow to the “relaxed state.” Different combinations
of the helicities h1 and h2 were invoked (cross-helicity
in Ref. [4], for example) for this purpose. Although
the “double curl Beltrami” system was accessible to
any of these approaches, it was not recovered. For
example, the assumption B ≠ aV in Ref. [5], makes
the more general solution inaccessible. We do wish to
emphasize, however, that our interest (in this paper) was
not to develop another minimum energy principle; we
were looking for a new genre of equilibria which will
simultaneously satisfy the induction and the force balance
equations.
(2) The general steady-state solution allowed by (9)

consists of a set of nonlinear equations Uj ≠ AjsxdVj ,
and Vj ? =Ajsxd ≠ 0 s j ≠ 1, 2d of which (10) is a spe-
cial case where Ajsxd ; mj ≠ constant s j ≠ 1, 2d. In a
thermodynamic sense, the spatially inhomogeneous (ho-
mogeneous) Aj imply a nonequilibrium (equilibrium)
state. The latter corresponds to the Euler-Lagrange equa-
tions associated with the global free energy F ≠ E 2P

j mjhj with mj acting as Lagrange multipliers. The
system can be viewed as a “grand-canonical ensemble” in
which the injection of a “helicity” hj creates an equivalent
energy mhhj . Equations (10) then follow as the global
“relaxed state.”
Before writing down some highly revealing solutions,

we analyze the mathematical structure of the double
Beltrami flow (11). We rewrite it in the form

s= 3 2l1d s= 3 2l2dB ≠ 0 , (13)

where l6 ≠ fa 6
p

a2 2 4b gy2. At the boundary ≠V
of the three-dimensional bounded domain V, we as-
sume n ? B ≠ 0, n ? s= 3 Bd ≠ 0, n ? s= 3 = 3 Bd ≠
0, where n is the unit normal vector onto ≠V. The third
condition follows, for smooth solutions, from the first and
second conditions and (11). If V is simply connected, the
boundary value problem has nontrivial solution (B 6; 0
in V), only if at least one of l6 belongs to the point
spectrum [discrete eigenvalues, spscurld] associated with
the self-adjoint part of the curl operator [7]. When V
is multiply connected, however, l1 and l2 can take ar-
bitrary real values (and, moreover, complex values) for
nontrivial solutions. For a multiply connected domain V
fl6 fi spscurldg with the topological genus (first Betti
number) n fi 1, the boundary value problem will have
2n degrees of freedom. Let S, s, ≠ 1, . . . , nd be the cuts
of V such that Vn >n

,≠1 S, becomes a simply connected
domain. On each cut, we define fluxes (currents)

FB
, ≠

Z

S,

n ? B ds, FJ
, ≠

Z

S,

n ? s= 3 Bd ds

s, ≠ 1, . . . , nd , (14)

where n is the unit normal vector onto S, and ds is the
surface element on S,. Because of the divergence-free
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U1 ≠ V 2 === 3 B, U2 ≠ V . (8)
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solution to (9) is Ûj ≠ 0 s j ≠ 1, 2d, or equivalently the
system of linear equations in B and V (a ≠ 1ym1 and
b ≠ 1ym2)

B ≠ asV 2 = 3 Bd ,
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which, will, naturally lead to magnetic field (and flow
velocity) structures far richer than the ones contained in
the “constant-a Beltrami-Taylor” (BT) system.
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creating pressure sbd gradients in this extended relaxed
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sustain a desired ion pressure gradient. Equations (11)
and (12) will serve as a basis for designing a highly
effective plasma confinement machine. We note that:
(1) The set of equations (10) can be derived by

following the Taylor prescription of relaxed equilibria
applied to (9), which allows two bilinear constants of
motion, the usual total magnetic helicity h1 ≠ 20.5
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a finite flow to the “relaxed state.” Different combinations
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in Ref. [4], for example) for this purpose. Although
the “double curl Beltrami” system was accessible to
any of these approaches, it was not recovered. For
example, the assumption B ≠ aV in Ref. [5], makes
the more general solution inaccessible. We do wish to
emphasize, however, that our interest (in this paper) was
not to develop another minimum energy principle; we
were looking for a new genre of equilibria which will
simultaneously satisfy the induction and the force balance
equations.
(2) The general steady-state solution allowed by (9)
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tions associated with the global free energy F ≠ E 2P
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system can be viewed as a “grand-canonical ensemble” in
which the injection of a “helicity” hj creates an equivalent
energy mhhj . Equations (10) then follow as the global
“relaxed state.”
Before writing down some highly revealing solutions,

we analyze the mathematical structure of the double
Beltrami flow (11). We rewrite it in the form

s= 3 2l1d s= 3 2l2dB ≠ 0 , (13)

where l6 ≠ fa 6
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a2 2 4b gy2. At the boundary ≠V
of the three-dimensional bounded domain V, we as-
sume n ? B ≠ 0, n ? s= 3 Bd ≠ 0, n ? s= 3 = 3 Bd ≠
0, where n is the unit normal vector onto ≠V. The third
condition follows, for smooth solutions, from the first and
second conditions and (11). If V is simply connected, the
boundary value problem has nontrivial solution (B 6; 0
in V), only if at least one of l6 belongs to the point
spectrum [discrete eigenvalues, spscurld] associated with
the self-adjoint part of the curl operator [7]. When V
is multiply connected, however, l1 and l2 can take ar-
bitrary real values (and, moreover, complex values) for
nontrivial solutions. For a multiply connected domain V
fl6 fi spscurldg with the topological genus (first Betti
number) n fi 1, the boundary value problem will have
2n degrees of freedom. Let S, s, ≠ 1, . . . , nd be the cuts
of V such that Vn >n
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・FRC is high-beta, and it is considered that FRC can be a two-fluid relaxation state. 

・In two-fluid relaxation, ion flow is important. 
・In merging-formed FRC, strong ion flow is generated by magnetic reconnection. 
∴To understand non-MHD effects on counter-helicity merging process is important.

Two-fluid relaxation theory
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Introduction & Background 
Objective of the work
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Goal: To understand whole formation process of an FRC by counter-helicity spheromak merging 
     ・plasma merging / magnetic reconnection 
           ・flow formation 
           ・ion/electron heating 
     ・relaxation / self-organization 
           ・two-fluid relaxation 

Approach: 
・experiment 
・numerical simulation 
     ・Hall-MHD…Hall-parameter dependency 
     ・PIC …electron / ion heating mechanism

plasma scale size

current sheet

reconnection scale length

Plasma merging contains two scale: 
・Large scale (torus plasma) 
・Small scale (reconnection physics)
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Introduction & Background 
Polarity of counter-helicity spheromak merging : Case-O & Case-I
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Poloidal field (Br) reconnection… Inflow (Vz)，Current sheet (Jt < 0)，Outflow (Vr) 
Toroidal field (Bt) reconnection… Inflow (Vz)，Currehs sheet (Jr)，Outflow (Vt) 
Reconnection plane tilts toward toroidal direction, therefore counter-helicity is different from null-helicity. 
In this presentation, we report the Hall effect, toroidal effect (polarity effect) through comparing 
case-O & case-I merging.

Counter-helicity merging has two patterns, which are defined by combinations of poloidal/toroidal magnetic flux.

Spheromaks are created by MCPG at both ends, 
・Case-O: inner electrode has negative voltage 
・Case-I:  inner electrode has positive voltage

Case-O

Case-I
+V+V

-V-V
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Hall-MHD plasma merging simulation 
Basic equations & numerical scheme
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2

II. SIMULATION MODEL

In this paper, we used two-dimensional axisymmetri-
cal explicit Hall-MHD code. 4th-order spatial difference
is adopted for spacial difference, and 2nd-order Adams-
Bashforth scheme is adopted for time-advancing. 4th-
order numerical smoothing17 is used as artificial viscos-
ity, which suppresses grid-scale numerical oscillations. In
this code, we installed sub-cycling scheme12, in which the
time step for solving magnetic field and fluid quantities
are different (Fig.2). The time step solving the induction
equation is determined by CFL condition of whistler wave
speed, and the time step solving the density continuous
equation, the pressure equation, and the equation of mo-
tion, is determined by fast Alfven wave speed. We can
solve Hall-MHD faster by installing this scheme. All pa-
rameters are normalized by physical quantities of the ini-
tial state, in which maximum poloidal maximum poloidal
magnetic field and maximum plasma density at the mag-
netic axis are unity. Electric resistivity (η), viscosity co-
efficient (ν), and Hall parameter di are free parameters.
In this simulation, we set η = 1 × 10−4 (Rm = 10000),
and ν = 1× 10−4 (Re = 10000).

∂ρ

∂t
= −∇ · (ρv) (1)

∂p

∂t
= −∇ · (pv)− (γ − 1)p(∇ · v)

+ (γ − 1)
(
ηj2 + ν(

4

3
(∇ · v)2 + |∇× v|2)

)
(2)

∂(ρv)

∂t
= −∇ · ρvv −∇p+ j×B

+ ν(
4

3
∇(∇ · v)−∇×∇× v) (3)

∂B

∂t
= ∇× (v ×B− ηj− di

j×B

ρ
) (4)

ǻWHall

ǻWMHD

Y�W�

W

W

nn-1 n+1

%�W�
/LQHDU�LQWHUSRODWLRQ

FIG. 2. A schematic of sub-cycling scheme

III. RESULTS AND DISCUSSION

A. An overview of merging process

In this section, we report an overview of the CHSM,
comparing the MHD case and the Hall-MHD case.
Firstly, we discuss an symmetry between case-O and
case-I in the MHD cases. Figure 3 shows the 2D pro-
files of poloidal flux (lines) and toroidal magnetic field
(Bθ, colored) in case-O and case-I CHSM. (a) is case-O
of the MHD (di = 0), (b) is case-I of the MHD (di = 0),
(c) is case-O of the Hall-MHD (di = 0.05), (d) is case-I
of the Hall-MHD (di = 0.05). Two spheromaks with re-
verse polarity merge together, and the toroidal field van-
ishes by magnetic reconnection, and then a single plasma
with no toroidal flux is generated. In case-O, toroidal
magnetic field is positive at the +Z side, and negative
at the −Z side. On the other hand, toroidal magnetic
field is negative at the +Z side and positive at the −Z
side in case-I. In both cases, toroidal plasma current is
positive and poloidal magnetic flux is positive. During
these merging, a little toroidal field with reversed polarity
is generated on the reconnected poloidal magnetic field.
This phenomena is called “slingshot effect”15. Toroidal
flow shear which is generated by reconnection distort the
poloidal magnetic field, and then toroidal magnetic field
with reversed polarity is re-generated. Figure 4 shows
2D profiles of thermal pressure. In all cases, two low-
beta plasma become a single plasma with high thermal
pressure.

In MHD, there is no difference between case-O and
case-I except the polarity of toroidal magnetic field and
generated toroidal flow. Magnitude of all quantities are
completely same between case-O and case-I. However,
in Hall-MHD cases, there are some differences between
case-O and case-I. In case-O, the reconnection X-point is
located on a high position at the radial direction, while
that is located on a low position in case-I. The motion of
the X-point during merging was experimentally observed
in MRX experiment13. Figure 6 shows time evolutions
of the radial position of the X-point. It is clearly shown
that the locations of the X-point in case-O of the Hall-
MHD cases (di = 0.01, 0.05) are higher than those in
case-I of the Hall-MHD cases. Therefore, it is assumed
that the Hall effect moves the X-point. However, com-
paring the di = 0.01 case with di = 0.05 case, there is
little tendency for the magnitude of the Hall parameter
(di). There is little difference of the location of the X-
point between the di = 0.01 cases and the di = 0.05 cases
in both case-O and case-I, while the difference between
MHD cases and Hall-MHD cases is not negligible. And
the location of the X-point is determined at the early
phase of the merging, and it does not keep moving to-
ward unique direction which is predicted by the Hall ef-
fect (outward in case-O, inward in case-I) at the middle
or late phase of the merging. Therefore, it is assumed
that the motion of the X-point is saturated at the early
phase of the merging, and the position is also affected

Basic equations

Numerical viscosity: 4th-order smoothing

un+1 = un +
�t

2
(3fn � fn�1)

@un

@t
= fn(u)

Time advancing: 2nd order Adams-Bashforth scheme

Spacial difference: 4th-order central difference

Hall term (di:ion skin depth)

Toroidal magnetic field (Bt) Thermal pressure (P)

Parameters: 
(Nr,Nz)=(512,4032), Rm=2000, Re=2000 
(Rw~20cm, B~100mT, Te~30eV)
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Hall-MHD plasma merging simulation 
Polarity effect & Hall effect on merging speed

9

Case-O

Case-I

Case-O: Hall effect does not enhance merging speed. 
Case-I:  Hall effect enhances merging speed. 
Merging speed is different between case-O and case-I. Polarity effect appears. 
→ Merging speed is determined by global pressure balance of inflow region / outflow region.

merging rate = (reconnected flux)/(total flux)
Toroidal field Bt (vector: Epol) thermal pressure P

MHD

Hall 
(weak)

Hall 
(strong)

(a) di=0, (b)di=0.01, (c)di=0.05
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Hall-MHD plasma merging simulation 
Hall effect on current sheet structure
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Jt (toroidal current sheet) Jr ( vector: (Jr, Jz) )

Hall effect on current sheet structure: 
・Current sheet length become short.    ・Radial current sheet (Jr) extend to downstream region. 
…Difference between toroidal current sheet and poloidal current sheet becomes large.

MHD

Hall-MHD 
(di=0.01)

Hall-MHD 
(di=0.05)

Jr extend to downstream region.

long current sheet

short current sheet
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Hall-MHD plasma merging simulation 
Polarity effect & Hall effect on flow structure
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Vr Vt

MHD

Hall-MHD 
(di=0.01)

Hall-MHD 
(di=0.05)

Hall effect on flow formation by merging: 
・Outflow (Vr) is biased to single direction. Case-O is negative, and case-I is positive. 
・Toroidal flow is negative near the X-point, and positive flow arises at the downstream region.

Positive toroidal flow at the downstream region.
Strongly biased Vr

bi-directional Vr
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Hall-MHD plasma merging simulation 
role of Hall effect on flow formation
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1. Hall effect moves X-point along the electron flow (electron current) at the reconnection point. 
2. Reconnection outflow Vr is strong toward the opposite direction from the X-point motion. 
3. The strong radial flow and the large ion inertia generates Hall current (Jr) at the downstream region. 
4. The Hall current (Jr) generates the strong positive toroidal flow at the downstream region.

∴ Hall effect in reconnection + outflow damping → flow generation at the downstream region

Vr creates Hall current.

Hall current

ion flow electron flow

Hall current

ion flowelectron flow

Case-O

Case-IR

Z
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Hall-MHD plasma merging simulation 
Hall effect on structure of energy conversion (ion acceleration) region
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(JxB)・Vpol (JxB)・Vt

・Flow acceleration region of poloidal flow and toroidal flow are different. 
・Poloidal (Vr,Vz): MHD…inside the current sheet / Hall-MHD…near the reconnection separatrix 
・Toroidal (Vt): Strong acceleration region at the downstream region by Hall current.

magnetic dissipation

to thermal energy

to kinetic energy

MHD

Hall-MHD 
weak 

(di=0.01)

Hall-MHD 
strong 

(di=0.05)
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Particle-In Cell plasma merging simulation 
Investigation ion & electron heating in counter-helicity merging

15
Using PIC simulation, we investigate heating mechanism near reconnection region.

Spatial scale: electron skin depth (c/ωe)

Toroidal magnetic field (Bz)

Ion Toroidal flow (Viz)
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Ti, //

Te, //

Particle-In Cell plasma merging simulation 
Ion & electron heating pattern on counter-helicity merging

16

Ti, ⊥

ion heating: 
・Perpendicular heating is dominant  
    in the downstream region. 
・Small parallel heating near the current sheet.

Te, ⊥

electron heating: 
・Parallel heating is greater than perpendicular.
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Summary & Future work
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Objective of my work: 
・non-MHD effect (mainly Hall effect) on counter-helicity spheromak merging & formation process of an FRC 
2D Hall-MHD simulation on counter-helicity spheromak merging: 
・Hall effect changes global structure of magnetic field (X-point position), and thermal pressure distribution. 
・Hall effect affect on merging speed through changing magnetic field / thermal pressure distribution. 
・Hall effect changes flow and current sheet structure. 

2D Particle-In Cell simulation on counter-helicity flux tube merging: 
・Strong ion heating is observed at the downstream region.  

Future Work: 
・3D Hall effect on merging / relaxation process of counter-helicity merging 
・Detailed analysis of ion/electron heating mechanism in the PIC simulations.
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Hall-MHD plasma merging simulation 
Sub-cycling method
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Sub-cycling method

2

II. SIMULATION MODEL

In this paper, we used two-dimensional axisymmetri-
cal explicit Hall-MHD code. 4th-order spatial difference
is adopted for spacial difference, and 2nd-order Adams-
Bashforth scheme is adopted for time-advancing. 4th-
order numerical smoothing17 is used as artificial viscos-
ity, which suppresses grid-scale numerical oscillations. In
this code, we installed sub-cycling scheme12, in which the
time step for solving magnetic field and fluid quantities
are different (Fig.2). The time step solving the induction
equation is determined by CFL condition of whistler wave
speed, and the time step solving the density continuous
equation, the pressure equation, and the equation of mo-
tion, is determined by fast Alfven wave speed. We can
solve Hall-MHD faster by installing this scheme. All pa-
rameters are normalized by physical quantities of the ini-
tial state, in which maximum poloidal maximum poloidal
magnetic field and maximum plasma density at the mag-
netic axis are unity. Electric resistivity (η), viscosity co-
efficient (ν), and Hall parameter di are free parameters.
In this simulation, we set η = 1 × 10−4 (Rm = 10000),
and ν = 1× 10−4 (Re = 10000).
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∂(ρv)

∂t
= −∇ · ρvv −∇p+ j×B

+ ν(
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FIG. 2. A schematic of sub-cycling scheme

III. RESULTS AND DISCUSSION

A. An overview of merging process

In this section, we report an overview of the CHSM,
comparing the MHD case and the Hall-MHD case.
Firstly, we discuss an symmetry between case-O and
case-I in the MHD cases. Figure 3 shows the 2D pro-
files of poloidal flux (lines) and toroidal magnetic field
(Bθ, colored) in case-O and case-I CHSM. (a) is case-O
of the MHD (di = 0), (b) is case-I of the MHD (di = 0),
(c) is case-O of the Hall-MHD (di = 0.05), (d) is case-I
of the Hall-MHD (di = 0.05). Two spheromaks with re-
verse polarity merge together, and the toroidal field van-
ishes by magnetic reconnection, and then a single plasma
with no toroidal flux is generated. In case-O, toroidal
magnetic field is positive at the +Z side, and negative
at the −Z side. On the other hand, toroidal magnetic
field is negative at the +Z side and positive at the −Z
side in case-I. In both cases, toroidal plasma current is
positive and poloidal magnetic flux is positive. During
these merging, a little toroidal field with reversed polarity
is generated on the reconnected poloidal magnetic field.
This phenomena is called “slingshot effect”15. Toroidal
flow shear which is generated by reconnection distort the
poloidal magnetic field, and then toroidal magnetic field
with reversed polarity is re-generated. Figure 4 shows
2D profiles of thermal pressure. In all cases, two low-
beta plasma become a single plasma with high thermal
pressure.

In MHD, there is no difference between case-O and
case-I except the polarity of toroidal magnetic field and
generated toroidal flow. Magnitude of all quantities are
completely same between case-O and case-I. However,
in Hall-MHD cases, there are some differences between
case-O and case-I. In case-O, the reconnection X-point is
located on a high position at the radial direction, while
that is located on a low position in case-I. The motion of
the X-point during merging was experimentally observed
in MRX experiment13. Figure 6 shows time evolutions
of the radial position of the X-point. It is clearly shown
that the locations of the X-point in case-O of the Hall-
MHD cases (di = 0.01, 0.05) are higher than those in
case-I of the Hall-MHD cases. Therefore, it is assumed
that the Hall effect moves the X-point. However, com-
paring the di = 0.01 case with di = 0.05 case, there is
little tendency for the magnitude of the Hall parameter
(di). There is little difference of the location of the X-
point between the di = 0.01 cases and the di = 0.05 cases
in both case-O and case-I, while the difference between
MHD cases and Hall-MHD cases is not negligible. And
the location of the X-point is determined at the early
phase of the merging, and it does not keep moving to-
ward unique direction which is predicted by the Hall ef-
fect (outward in case-O, inward in case-I) at the middle
or late phase of the merging. Therefore, it is assumed
that the motion of the X-point is saturated at the early
phase of the merging, and the position is also affected

CFL: Whistler wave

CFL: Alfven wave

MHD

Hall-MHD

CFL conditionHall term & whistler wave
dispersion relation

Hall term strongly restrict the Δt .

wave velocity
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Hall-MHD plasma merging simulation 
Overview of merging (MHD)
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Thermal pressure (P)

Toroidal magnetic field (Bt) Toroidal flow (Vt)

Counter-helicity merging: 
・Toroidal magnetic field cancels out by merging. 
・Thermal pressure increase by merging. 
・Strong toroidal sheared-flow arise by merging.

Parameters: 
(Nr,Nz)=(512,4032), Rm=2000, Re=2000 
(Rw~20cm, B~100mT, Te~30eV )


