Asynchronous 3D HYPERS Simulations of Compact Toroids and Magnetoplasmas

Y.A. Omelchenko

Trinum Research, Inc., San Diego, CA, USA

US-Japan CT2016 Workshop on Compact Tori, Irvine, CA, August 22-24, 2016

Hybrid Model

(radiation-free + kinetic ions + inertialess fluid electrons + quasineutrality)

$$0 = \frac{4\pi}{c} (\mathbf{j}_i + \mathbf{j}_e) - \nabla \times \mathbf{B}$$

$$0 = en_e \left[\mathbf{E} - \eta (\mathbf{j}_i + \mathbf{j}_e) \right] - \frac{\mathbf{j}_e \times \mathbf{B}}{c} + \nabla p_e$$

$$\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$en_e = q_i n_i, \mathbf{j}_e = -en_e \mathbf{v}_e$$

$$p_e = n_e T_e \sim n_e^{\gamma}$$

Why Go Hybrid

- Full-orbit ion dynamics (high-beta, reconnection)
- Hall effect (reconnection and fast m.f. penetration)
- Ion energization (heating & acceleration)
- Ion skin depth (shocks and boundaries)
- Plasma mixing (counter streaming)

Hybrid paradigm is a natural choice for global modeling but one has to handle disparate ion and whistler scales

My Hybrid Adventure

- Wrote first hybrid codes (2D FIRE, 3D FLAME) at Cornell to study ion rings in FIREX (1993-1998)
- Applied these codes to simulate 2D θ-pinch FRC formation and 3D stability of FRCs at GA (2000-2001)
- Contributed to developing the H3D code for modeling the Earth's magnetosphere at UCSD (2005-2014)
- A new code (HYPERS) has changed the way hybrid simulation is conducted (2010-now)

Two Simulation Worlds

Event-Driven

Time-Driven

EngineeringNOScientificSimulationCROSS-TALKSimulation

Three Bad Things About Using Time as a Driver

Time is NOT a measure of CHANGE Idle CPU speed

Time is NOT a ruler of ACCURACY Missed correlations

Time is NOT a guarantee of CAUSALITY Unphysical results !!!

Self-Adaptive Integration: EMAPS

TDS: update ALL cells

PIC t

Field t

Local timesteps self-adapt in time

History of EMAPS: 2006-2013

HYPERS: a "3G" Hybrid Code

- EMAPS integration: robustness and speed
- Compile-configurable (2D/3D) Cartesian grid
- Staircase walls with masked cells
- Staggered (Yee) grid: exact preservation of divB=0
- Local and periodic boundary conditions, injection
- Multiple ion species
- Phenomenological resistivity models
- Momentum/energy conserving ion-ion collisions
- Object-oriented programming (C++/Fortran)
- Scalable (>100K cpus), flexible domain decomposition
- Post-processing/visualization (IDL/ParaView)
- **Current setups**: spheromaks, FRCs, astrophysics-inlab experiments, turbulence, space plasma flows with obstacles ("Earth", "Moon"), etc.

3D Spheromak Merging^{1,2} (2013)

with ¹H. Karimabadi (SciberQuest, Inc) ²M. Brown (Swarthmore College)

SSX: "MHD Wind Tunnel"

Ion Density (protons)	10^{14} - 10^{15} cm ⁻³
Temperature (T _e ,T _i)	20 - 80 eV
Magnetic Field	0.1 Tesla
Ion gyroradius	0.5 cm
Alfvén speed	100 km/s
S (Lundquist number)	>1000
Plasma β	10-100%
Poloidal flux	3-4 mWb

Spheromak simulation setup

- Initialized with quasi-axisymmetric spheromaks
- Initial flow speed ~ 75 km/sec
- Absorbing walls, S > 1000, no ion-ion collisions
- Perfectly conducting flux limiter: L=80cm, R=8cm
- Case 1: single spheromak dynamics
- Cases 2-3: colliding counter-helicity spheromaks

Case 1: Single spheromak

Single spheromak

Single spheromak: field-Δt

Case 2:Two "tilting" spheromaks

Magnetic Energy

Number of Particles

Final result: asymmetric FRC

Two "tilting" spheromaks

B

t

Two "tilting" spheromaks

Case 3:Two "stable" spheromaks

Final result: stable, symmetric FRC

Two "stable" spheromaks

B

t _{ci}=50

t _{ci}=100

Two "stable" spheromaks

Two "stable" spheromaks

3D FRC θ-Pinch Formation (2014)

FRC simulation setup

- Deuterium plasma: L=250 cm, R =30cm
- Chodura resistivity $(0.1 \le c_{ch} \le 0.2)$
- -0.6kG ≤Bz (on axis)≤ -0.2kG, Bz (wall) ≈ 1.7kG
- $n_{max} \approx 5 \times 10^{14} \text{ cm}^{-3}, 2 \le S^*/E \le 4$
- Grid Nx x Ny x Nz = 80x80x240 cells
- Ion-ion collisions
- $\Delta t_{coil} \approx 4 \ \mu s$

Stable FRC: Density and Toroidal Field

Stable FRC: Rotation and Timestep

Stable FRC: Radial Profiles

Ion-ion collisions contribute to establishing equilibrium profiles

Y.A. Omelchenko, Phys. Rev. E. 92, 023105, 2015

Unstable FRCs

Y.A. Omelchenko, Phys. Rev. E. 92, 023105, 2015

29

MSX Experiment^{1,2} (2015)

with ¹T. Weber (LANL) ²R. Smith (Tri Alpha, Inc)

MSX Experiment at LANL

MSX Simulation Setup

- Simulation box: L=38.4cm, R =7.8cm, λ_0 = 0.6 cm
- Deuterium FRC plasma with $T_i \approx 65 \text{ eV}$
- Bz (on axis) ≈ -0.4T, Bz (wall) ≈ 0.6T
- $n_0 \approx 10^{22} \text{ m}^{-3}$, $V_{FRC} = 240 \text{ km/s}$, $R_0 \approx 2.4 \text{ cm}$, $L_s/2 \approx 6 \text{ cm}$
- Grid Nx x Ny x Nz = 104x104x256 cells
- Ion-ion collisions
- $V_{A0} \approx 150 \text{ km/s}, \Delta t_{PP} \approx 0.1 \mu \text{s}$

Data Comparison: Example

Ion temperature (simulation)

Experimental snapshot

Key plasma signatures are reproduced in HYPERS simulations

HYPERS-MSX: Plasma-Filled Mirror

Ion temperature

Field timestep

Plasma density

3D Turbulence Simulations¹ (2015)

¹V. Roytershteyn (Space Science Institute)

Why Kinetic Simulations of Turbulence?

- MHD provides a good description, but several key features of turbulence in weakly collisional plasmas are outside MHD:
 - 1. Dissipation of turbulence
 - 2. Role of instabilities
 - 3. Magnetic reconnection
- These processes are associated with kinetic (both ion & electron) effects
- Our work: large-scale hybrid and fully kinetic PIC simulations

Full PIC Simulations of Driven Turbulence

anisotropic box, $\delta B/B_0=0.2$, $\beta=1$, $T_i/T_e=1$,mi/m_e=50

Turbulence Simulation Setup

- Simulation box: 64x64x256 λ_i , $\omega_{\text{pi}}/\omega_{\text{ci}}\text{=}2000$
- Collisionless proton plasma, $\beta_i = \beta_e = 0.5$
- Grid Nx x Ny x Nz = 256x256x512 cells
- Pump wave: N=4 (harmonics):

$$j_{ext}(x,t) = \frac{c}{4\pi} (e_m \times k_m) \sum_{m=1}^{N} [B_m^s(t) \cos(k_m \cdot x) + B_m^c(t) \sin(k_m \cdot x)]$$

$$j_e = J - j_{ext} - j_i$$

$$E = \frac{j_e \times B}{en_e c} - \frac{\nabla P_e}{en_e} + \eta (J - j_{ext})$$

$$J = \frac{c}{4\pi} \nabla \times B$$

Hybrid Simulation of Large-Scale Plasma Turbulence with HYPERS (2015)

- Each particle is pushed with its own (adaptive) time step.
- Local time increments for fields adapt to dynamic physical time scales
- divB=0 is identically preserved

Time steps for fields in a turbulence simulation vary by an order of magnitude

Hybrid + Full PIC : Kinetic Coverage of a Very Large Range of Scales

LAPD Experiment Simulation (2016)

LAPD Experiment

A. Colette and W. Gekelman, Phys. Plasmas 18, 055705 (2011)

Photographs of expanding laser-produced plasma (XY) ⁴²

LAPD Simulation Setup

- Simulation box: 10x10x10 cm, $\lambda_0 = 1$ cm
- C⁺⁴ plasma with energy E=2KeV
- Bz = 0.6T
- $n_0 \approx 5 \times 10^{20} \text{ m}^{-3}$, $T_e = 5 \text{eV}$
- Grid Nx x Ny x Nz = 100x100x100 cells
- NO ion-ion collisions
- r_{Li}≈4 cm

LAPD: Expanding Plasma (Bz)

LAPD: Expanding Plasma (ne)

UNR Experiment Simulation (2016)

UNR Experiment

C. Plechaty, R. Presura, and A.A. Esaulov, PRL 111, 185002 (2013)

Without magnetic field:

With magnetic field:

UNR Experiment: MHD C. Plechaty, R. Presura, and A.A. Esaulov, PRL 111, 185002 (2013)

Only the plasma focusing effect is captured by single-fluid MHD.

The collimated flow description requires ion kinetic and Hall effects!

UNR Experiment Simulation (2016)

- Simulation box: 7x6x6 mm, $\lambda_0 = 0.1$ mm
- C⁺⁴ and H⁺ plasma with energy E=0.5KeV

• By ≈ 10T

- $n_0 \approx 5 \times 10^{24} \text{ m}^{-3}$, $T_e = 5 \text{eV}$
- Grid Nx x Ny x Nz = 210x180x180 cells
- Ion-ion collisions (frequency > cyclotron frequency)
- r_{LH}≈ 0.07 mm, r_{LC}≈ 0.17 mm

Summary

What HYPERS can do in 3D:

- FRC formation (θ -pinch, merging), compression
- Global equilibrium studies of inhomogeneous plasmas
- Heating of FRCs with ion (charge-neutralized) beams
- Refueling of FRCs with spheromaks, ion rings, etc.
- Turbulence and reconnection studies
- Propulson, interactions of plasmoids and plasma streams with magnetized and unmagnetized targets

Planned development:

- Fast ions: slowing down/scattering collisions
- Neutral beam/gas: ionization, charge exchange (CEX)
- Plasma-vacuum interface: XHYPERS
- Conforming walls (cut cells)
- Magnetostatic solver