

2016 US-Japan Workshop on Compact Torus Aug 22-24, 2016, Irvine, California, USA

Topological Transition and Inductive Current Drive of a Translated Field-Reversed Configuration

T. Asai, J. Sekiguchi, M. Arai, S. Katayama, J. Ishiwata, T. Edo, Ts. Takahashi **Nihon University**

> M. Inomoto, Y. Kaminou **The University of Tokyo**

> > To. Takahashi **Gunma University**

H. Gota, L. Steinhauer Trialpha Energy

Y. Narsuhima

NIFS

Open Field Region

Overview of the experiment

The series of experiments have been conducted on the FAT facility which has a theta-pinch type formation and large bore confinement region with transparent quartz chamber.

Z

Closed Field Region

Poloidal Magnetic Field

Separatrix Radius

Toroidal Current

Motivations

This development has been conducted for following CT related subjects.

- 1. Extend FRC's lifetime by the current drive.
- 2. Amplify the poloidal flux to confine tangentially injected fast beam ions.

Fig. 2 q Ψ - p Ψ diagrams of (a) conventional tokamak (aspect ratio A \approx 5), (b) low aspect ratio tokamak (ST) (A<1.5).

- 3. Study the effect of topological difference between simply-connected and torus geometry on stability.
- 4. Stability and relaxation study from high-beta theta-pinch FRC side.
 - This technique can be a tool to form High-beta ST from FRC side.

- boundary on the confinement region.
- With relatively higher mirror ratio, FRC expand radially while it keeps the length.

US-Japan CT Workshop, Irvine CA, Aug. 23, 2016

Center solenoid

A "cantilever" center solenoid is installed on the geometrical axis of a quasi-spherical confinement region.

	φ (mm)	Length (mm)	
Liner	60.5	2100	
Outer layer	55	000	
Inner layer	45	770	

Sequence of Formation and Current Drive

- An FRTP-generated FRC is translated w/o any disruptive perturbation.
- The FRC with 10²¹m⁻³ of electron density and ~ 40 eV in ion temperature is translated into the confinement region with a CS installed.

- The range of translation velocity is between 150 200km/s.
- ➡ CS amplifies poloidal flux (toroidal current) , then a FRC dies quickly....

Time evolutions of (a) plasma radius (z = 0.30 m) and input current on a center solenoid.

Internal Magnetic Field Measurement

Specifications of magnetic probe

	Bz	Bt	Pitch	Turn Number	Jacket
Magnetic probe array (top)	2ch	14ch	0.5	20	Al2O3
Magnetic probe array (bottom)	16ch	16ch	1.0	20	Al2O3

Radial profile of toroidal and poloidal magnetic field is measured at two toroidal positions .

Magnetic Field Profile

 Internal magnetic field measurement shows increased reversed component of poloidal flux.

US-Japan CT Workshop, Irvine CA, Aug. 23, 2016

- Toroidal magnetic field is induced by OH current on the CS.
- Is this transient phenomena during a relaxation?
- It is maintained for several tens of alfven times.

Inductive Current Drive in a FRC

- How does the toroidal electric field work onto the electrons (and ions)?
- Conventional FRC only has poloidal flux and perpendicular diamag current.
- ⇒ E_{θ} cannot drive electrons directly into the toroidal direction.

Ion Doppler Spectroscopy

• Ion flow and temperature measures at r = 15 cm (magnetic axis).

Doppler spectroscopy doesn't indicate any significant change in ion temperature and toroidal flow.

Toroidal flow is in the range of 2 - 4 km/s (about 1/10 of confinement region). Accelerated in the ion diamagnetic direction.

• Larmor radius of deuterium ion is around 2 - 8cm in the FRC.

Inductive current drive in a FRC

- How does the toroidal electric field work onto the electrons (and ions)?
- Conventional FRC only has poloidal flux and perpendicular diamag (dominantly electron?) current.
- ⇒ E_{θ} cannot drive electrons directly into the toroidal direction.
- Ion current is insufficient to buildup the observed poloidal flux.

Fast Camera Images

- Kink (n = 1) mode can be seen during and after translation process.
- This can be a source of observed toroidal magnetic field.

Picture of inductive current drive in a FRC

- Toroidal magnetic flux could form helical magnetic field structure.
- Electrons can be accelerated along the helical magnetic field line by induced E_{θ} .
- This may be a reason of increased toroidal field by driven CS current.

Summary + Future Plan

- A FRC which has simply-connected boundary can be translated into a confinement region with a center structure without disruptive perturbation.
- PoloIdal flux (toroidal current) is successfully induced by driven CS. However, it may change the magnetic configuration of FRC.
- Toroidal magnetic field is also increased while the CS is being exited. The TF is maintained for several tens of alfven time.
- The spontaneously generated toroidal flux potentially realize inductive current drive by induced toroidal electric field.
- For further study, we have to maintain the FRC longer to observe relaxation process after the current drive.

US-Japan CT Workshop, Irvine CA, Aug. 23, 2016

Summary + Future Plan

- Collisional merging and low-frequency wave injection have been initiated at Nihon University as a heating and current drive technique.
- Because of its high beta (i.e. low magnetic field) nature, we choose low-frequency (~100kHz) range of wave.
- We will start with a pair of tandem type one-turn (n = 0) antenna.

tunanununu

ШПППППППП

