Hybrid FRC equilibria with fully-kinetic ions and fluid electrons

Loren Steinhauer Tri Alpha Energy

> CT 2016, Irvine August 22-24, 2016

Objective: reconstruct FRC equilibrium based on measured data

FRC reconstruction is like "reconstituted orange juice"

- Most of the vitamins and minerals are retained
- You can't go to Florida every time you want an orange juice

Two approaches (1) Front-loaded, Ohm's-law driven (2) Evolving sequence of equilibrium

Apply to model C-2U shot #43628

Challenge: how to reconstruct FRC equilibria, working off limited diagnostics?

Measurables

Routine (each time instant):

> Excluded flux radius profile: R_{ϕ} vs z

> Multi-chord interferometry: $\int n_e dl vs y$

Occasionally: T_e , T_i , superthermal ions, etc.

Need

Efficient interpretative tool, "equilibrium reconstructor"

- > Just enough "physics" to be realistic
- > Instant hands-off, numerically-stable

What we *especially* want to know about the "insides" of an FRC

Shopping list

- FRC dimensions: R_s , Z_s (half length) \leftarrow not actually measured (R_{ϕ} , $Z_{2/3}$)
- Poloidal flux ϕ_p
- Scrape-off layer thickness L_n
- Fraction of the current carried by superthermal ions
- Fractions of ion populations: *core*-confined and periphery (mirror confined)
- Stability indices: tearing, interchange, tilt

Equilibrium reconstruction methods

Existing methods

- Analytic formulas: R_s , Z_s , ϕ_{pr} , etc.
- Grad-Shafranov snapshots (static, single-fluid)
- Enhanced-GS: fluid "bulk" ions plus superthermal Monte- Carlo ions

Emerging methods

- Fast, flexible, time-tracking Grad-Shafranov: *mature*
- Hybrid equilibrium "HyEq" : *functional but "developing"*

Hybrid equilibrium model ingredients

FRC realities

 Large orbit ions; even *bulk* ions *T_i* = 300-800eV especially superthermal ions *W_i* = 10-15keV

• Edge plasma controls:

> Strong applied mirrors > Divertor biasing

Two balancing acts

• Number of adjustable parameters in model

> Too many: too complex

> Too few: too little flexibility

Numerical burden

> Monte-Carlo fast ions, numerically intensive

> Distribution ions, also intensive

Unless...

Unless: ion distribution with analytic moments

- Only two kinetic constants of motion in axisymmetric system
 - > thermal (Hamiltonian) and
 - > momentum (canonical angular momentum)
- Separable "thermal" & "momentum" parts
- Kinetic confinement criterion
 - > Separates core-confined and mirror-confined populations
 - *Result* Analytic moments (density and current density)
 - Small number of adjustable parameters

Computational architecture of equilibrium reconstruction tool

Reconstruction of C-2U #43628 Preview:

GS tool

- Time sequence of equilibria from 0.5ms to 5.5ms
- How key parameters vary in time
- Snapshots of profiles (poloidal, radial) at three times
- Confidence checks

HyEq tool

- Snapshots of profiles at three times
- Unique properties of FRCs with a significant super-thermal "beam-ion" component

First: GS tool reconstruction...

Compare FRC dimensions: R_s and R_{ϕ} , Z_s and $Z_{2/3}$

Time histories → Symbols = *measured* Lines = *reconstructed*

Radii: R_s exceeds R_{ϕ} more and more:

- "Two dimensionality"
- Elongation not large

Half-lengths: Z_s and $Z_{2/3}$ consistent pattern;

Getting shorter

GS tool

Compare poloidal flux: actual ϕ_p and "formula" ϕ_{RR}

GS tool

Something drives current to increase the flux!

How global stability changes in time GS tool

Something happens after about 5.5ms

Confidence check # 1: <u>edge thickness</u> measured and reconstructed

GS tool

Interferometry thickness: gradient length of $\int ndl$ at $y = R_{\phi}$

- > Tilt instability?
- > Tilt feeding dissipative cascade?

Confidence check # 2: poloidal shape of core measured and reconstructed GS tool

Grad-Shafranov tool performs reasonably well

Reconstruction of C-2U #43628 with HyEq

Dimensions: radius & half length

Distinguish measurables, R_{ϕ} , $Z_{2/3}$ from reconstructions R_s , Z_s

 R_s : HyEq similar but ~5% lower than GS

Z_s: similar trends but HyEq ~20% shorter than GS

- Shorter \rightarrow reaches S_*/E threshold at ~ 3.5 ms
- What inflates X-point region?

• GS & HyEq very close & well above RR formula

Core- and mirror-confined inventories

• GS (fluid): <u>regions</u>, e.g. "core" = inside separatrix

HyEq

tool

• HyEq (kinetic): *populations*, core-, mirror-confined

- Core-inventory *half* the mirror-confined
- Decay time of $N_{core} \approx 8.7$ ms; tail-off begins 3.5 4ms
- Mirror population plays an *outsized* role in overall confinement

How close are HyEq and GS equilibria?

Grad-Shafranov tool still useful:

- Less sophisticated;
- Captures many features of hybrid equilibria

Summary: reconstruction tools

- GS and HyEq tools give similar reconstructions of #43628
- Both notably different from standard formulas, especially poloidal flux
- Evidence of current drive for ~4ms
- MHD stability degrades with time; leads to prolonged death rattle rather than abrupt termination
- Periphery ion population *double* the core population; plays an *outsized* role in overall confinement
- Development of both GS and HyEq tools continue