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Magnetic relaxation in the reversed-field pinch (RFP) is a
demanding test case for comparisons with extended MHD
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e Sequence of tearing modes nonlinearly coupling core and edge

e Reminiscent of tokamak disruption processes

e Visco-resistive MHD can be extended with two fluids, finite beta,
kinetic effects, impurity evolution, radiation,
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Outline

e RFPs, DEBS, and NIMROD

e Single-fluid comparisons

e T wo-fluid comparisons
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Multiple tearing-mode resonances allow complex nonlinear
MHD in standard RFP operation

Safety factor vs. radius
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e High beta and perhaps Ohmic ignition are potential advantages
for fusion with RFPs

e Transient improved confinement is tokamak-like
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Madison Symmetric Torus (MST)

e Rp/a=(1.5m)/(0.52 m) = 3

o I < 600 KA

e ne~ 1019/m3

o Toj < 2 kV
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Magnetic relaxation as a sawtooth cycle in MST

e Ohmic drives A &< J;/B more
peaked: flathess parameter «
decreases

e Core-resonant m =1 modes
become unstable

e Edge-resonant m = 0O stable
but nonlinearly driven by
m =1 at sawtooth crash

e Crash EMF generates core
toroidal flux &, flattens A
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e Key mechanism: fluctuation-induced ‘dynaNmo’NEI\/IF in mean-field
parallel Ohm's law, (E)| ~ —(V x B) +(J x B>H /(en) + (nd)
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3D MHD codes DEBS and NIMROD have different capabilities

DEBS: single-fluid visco-resistive MHD in cylindrical geometry
e OA/0t =SV xB —nJ
pdV /0t = —SpV - VV + SJ x B + V2V,
where Lundquist number S = 7res/7a

e Dynamic viscosity for larger time steps for same nominal v

e Schnack et al., J. Comput. Phys. 70, 330 (1987)

NIMROD: extended MHD in cylindrical or toroidal geometry

« E=-VxB+ 552 — G +nd+ G

e Hall term J x B/(en), ion gyroviscous stress Ilgy, ...

e Sovinec and King, J. Comput. Phys. 229, 5803 (2010)
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DEBS case for single-fluid MHD comparison to MST
experiments

e 3=0 (Bexp ~0.1)
. 32 .
e S=4E6 (% Sexp ~ Ip Te . with Ip ~ 400 kA)

e Magnetic Prandtl number Pm = 7res/Tyisc (x v/n) =~ 100
(0.1 £ Pm.exp <1 using estimated perpendicular Braginskii
coefficient)

e Dynamic viscosity enabled

e J. Reusch et al., PRL 107, 155002 (2011)
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Sawtooth cycle, equilibrium evolution show good agreement
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e Fluctuation-induced EMF behaves similarly to experiment
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MST magnetic fluctuation amplitudes strongly overpredicted

Edge B, fluctuation amplitude
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NIMROD cases for extended MHD simulations of RFP

e Cylindrical geometry

e Single fluid or two-fluid with cold or warm (8g = 0.1) ions

e Uniform thermal pressure

e S <8x 104 much smaller than most MST cases

e P <1, similar to MST perpendicular value assuming Braginskii

e King, Sovinec, & Mirnov, POP 19, 055905 (2012)

11/23



Two-fluid MHD with ion gyroviscosity has saturated
magnetic-fluctuation amplitudes 2x smaller than single-fluid
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(a) zero-g single-fluid computation (b) finite-8 single-fluid computation finite-beta two-fluid computation
King, Sovinec, and Mirnov, POP 19, 055905 (2012)

e [rends toward better agreement with MST experiments
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Hall dynamo has complex radial structure in both simulation
and experiments with deep-insertion probe

Simulation
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In two-fluid MHD, magnetic and flow relaxation couple through
common J X B term in Ohm’s law and momentum equation

e Mean-field Ohm’s law:

— 1~ =
MHD dynamo a1 avnamo

sl

\

— MHD and Hall dynamos often compete

e Mean-field momentum equation:

S~ [(3xB), n,

Maxwell stress Reynolds stress

—p <V : Vv> +pr V2 S\

\

— Reynolds stress tends to oppose the larger Maxwell stress
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Two-fluid MHD relaxation events significantly change mean
flow profiles, as sawteeth do in experiment

Simulations Experiments
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e Simulated radial structure is
complex
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e Only a few simulated events

available Minor radius (m)
Kuritsyn et al., Phys. Plasmas 16, 055903 (2009)
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Summary

e Magnetic relaxation in RFP experiments provides demanding
comparisons for nonlinear simulations of extended MHD models

e Single-fluid DEBS simulations closely reproduce equilibrium
evolution observed in MST but strongly overpredict B

e Single- and two-fluid NIMROD simulations reveal that the Hall
dynamo and ion gyroviscosity terms may improve this agreement

e Hall-like term also appears as Maxwell stress in momentum
equation alongside Reynolds stress, coupling magnetic relaxation
to flow relaxation

e Deep-insertion Hall dynamo probe results on MST show complex
radial structure consistent with extended MHD simulations
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Initial CT injection experiments at WIiPAL

(Wisconsin Plasma Astrophysics Laboratory)

D. Endrizzi, C. Forest, L. Laufman-Wollitzer, University of Wisconsin

17/23



MPDX (Madison Plasma Dynamo Experiment) tests with CT
injector on loan from TAE/U. Nihon group
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Injector was installed on MPDX with help of H. Gota et al.

-

e Matsumoto et al., RSI 87, 053512 (2016), e.g. for injector details
— nct ~5x 1021 /m3, Tt ~ 40 eV, Nct ~ 1019
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Fast camera footage of injection into vacuum

T+:+0.006 ms T+ +0.047 ms
Fate: 49026 Exp: 20 ps EDR: 10 ps Fate: 49026 Exp: 20 ps EDR: 10 s

T+ +0.027 ms T+ +0.067 ms
Fate: 49026 Exp: 20 ps EDR: 10 s Fate: 49026 Exp: 20 ps EDR: 10 ps




Injected CT speeds measured by Isat array
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Injection into target plasmas may show leading shock

chkground Plasma
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¢ Ntarget ~ 1017/mM3, Tiarget ~ 10 eV (Gs ~ 20 km/s)

22 /23



Scan of target parallel B shows no clear trend
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