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Motivation to explore the low-aspect-ratio RFP - |

- Resonant/non-resonant mode numbers depend on A.
- Lower n (m=1) mode becomes resonant as A is lowered.
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With an adequate choice of g, more space would be resonant RWM

available in the core region without major resonant surface



Motivation to explore low-A RFP - |l
Bootstrap current fraction is sensitive to A and pressure profiles

B-field
T T
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temperature profile

at 1,=90 kA (ng~1.0)

» poloidal beta =24%

Peaked pressure profile with rather flat

Te(O):3OO eV, ne(O):4_0X1019 m-3

» Sizable bootstrap current could be expected in low-
A RFP (with very high-beta). (Shiina, 2005)

» Estimate of the bootstrap current fraction with
equilibrium reconstruction using “RELAXFit” shows:

ressure profiles
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REversed field pinch of Low-Aspect-ratio eXperiment

Rla=A=2
(0.51 m/0.25 m)

Resistive wall boundary

I, < 125 KA
ne = 1018 ~
2%x101¥9 m3

e LA ) T.(0)~100-200 eV
. I8 = * . ‘\
“ BN ) I Bpe0~5'15%

' . T,>3 mS

Kyoto Institute of Technology

Objectives of RELAX includes:
- geometrical optimization of RFP
- bootstrap current issues
- MHD with resistive wall boundary



Wide operational range in (F, ©) space is realized in RELAX

(40kA<Ip<B0OKA)
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e In shallow reversal region,

» Periodic Quasi-Single Helicity (QSH) or Helical Ohmic RFP state
tends to be realized

e In deep reversal, high-© region,
» Amplitudes of resonant modes are suppressed with broad spectrum
» SXR emission increases, indicating improved plasma performance



Example of QSH in RELAX from edge magnetic fluctuation

Flat-topped phase

n=3

60r » QSH defined by N.<2 can be
= 40f confirmed from edge magnetic
% -0l _ fluctuation spectrum.
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Comparison of the experimental and computed flux surfaces
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Left: reconstructed magnetic surface shape using SXR imaging and CT
technigue during QSH phase in RELAX. The major axis is to the left of the
cross section. Right: helical equi-pressure surface shape in 3-D MHD
simulation using the MIPS code. The helical states show good agreement.



Two processes are possible to form the helical core structure
with resonant and non-resonant modes

Non-resonant case

Resonant case

Resonant case
» Magnetic island appears and grows on the gq=1/4 surface, the original
magnetic axis disappearing by helical flow-driven magnetic reconnection .

» The O-point of the island forms a new helical magnetic axis.
» A bean-shaped, hollow pressure profile is formed in a poloidal cross section

Non-resonant case
» The original magnetic surfaces deform directly into a helical shape.

» A bean-shaped, hollow pressure profile is still formed.
(Mizuguchi et al., PPCF 2012)



Wide operational range in (F, ©) space is realized in RELAX

Shallow reversal
and non-reversed

region
[z,

(40 kA <1, < 80KA)
0.5 [ e

e In shallow reversal region,

» Quasi-periodic Quasi-Single Helicity (QSH) or Helical Ohmic RFP
state tends to be realized

e In deep reversal, high-O region,
» Amplitudes of resonant modes are suppressed with broad spectrum
» SXR emission increases, indicating improved plasma performance
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(Ikezoe et al., PPCF 2012)



The resistive wall mode in RELAX

DEBS code simulation
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Fig. 3. Growth rate vs ak, = na/R for the equilibrium specifiled 510° A
by four sets of ©g, a.
Linear stability analysis 0

predicts the most unstable
mode with ne~1, where
e=a/R (Masamune, 1998)

timein 1,

Radial mode energy vs. time for the RWM
simulation with 7, =0.02 (Pr = 30, S = 3x10%)
(Paccagnella, 2008)



Saddle coil array for feedback control of MHD modes

Toroidal direction 2n
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saddle coil connection for m/n=1/2
mode stabilization with separate
control at two poloidal gaps

0

Poleidal direction
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Feedback control of a single RWM
has been performed using 64 saddle
coils (4X16) covering the whole torus.

The saddle coils are connected in
series to form m/n=1/2 helical
windings, with separate coils at two

poloidal gaps, for stabilization of the
most unstable RWM in RELAX.
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Diagram of the control power supply
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Feedback control of single m/n=1/2 RWM has resulted in
longer discharge duration ( ~ 3t,)

» Feedback control of a single
o ' om— ' T e —] RWM has been performed

3 — with feedback using 64 saddle coils (4X16)
2 4o - without feedback * covering the whole torus.

100

» As aresult of feedback control,
the sensor signals are
suppressed below the pre-set

A | | | | ‘ P— level over the discharge

ar preset level 1 ) )

04 A/k. » The discharge duration
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(Tanaka et al., PFR 2014)



Poloidal currents at the insulated gaps produce
signals to the feedback sensor coils

» Poloidal current flows in the
top view vessel and flanges when the
reversed toroidal field is
applied in the current rise
phase.

» The poloidal current persists
because of the longer L/R time
of the flanges.

» The resultant fields produce
signals to the feedback sensor
coils as m/n=1/2 component.




Independent control at the poloidal gaps
leads to further improvement
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» m/n=1/2 mode amplitude (outside the vessel) is lowered
particularly during the current rise phase.

» In the three cases, the discharge duration is limited by the
saturation of iron core (~0.2 Vs).



Thomson temperature provides central electron pressure p
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(Ueba et al., PFR 2014)



Density dependence on electron beta is under investigation

> The electron beta increases
with density well below the

20F . . . . : Greenwald density limit.
< 15¢ . o 1 » The electron poloidal beta
< 10} oo 82U <3 . increases with density in
< ; the region below the
B @ 50 kA discharge| .
. e 80 KA discharge Greenwald density.
O-r I I i

00 01 0.2 / 03 04 05 3% A 140 GHz millimeter wave
N/Ng Interferometer is working.

» Preliminary gas injection
experiment seems to be
promising.



Simple nozzle has been tested
for directional gas flow

Ionlzatlon gauge
EM valve

\ ';Hi“ﬁj - _
/ = > A simple nozzle has
UT\ been tested in

combination with fast
0.85m Fast IG acting electromagnetic
valve

» Gas flow velocity is
estimated using a fast
lonization gauge
facing the nozzle

Simple nozzle



Directional gas flow at least v > 1km/s has been confirmed
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» Initial rapid increase in pressure followed by decay to
steady value may be an indication of directional gas flow

» The total number of injected H, particles can be estimated
from steady state pressure



Magnetic helicty in a toroidal system

K =[4-BdV-oW

dK,
dt

:—2jE.BdV
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Magnetic helicity in RELAX plasma at [p~100kA :

¥ ~6x10™° (Wh)

K, ~6x10~% (Wb?
® ~ 0.1 (Wh) : Wb™)



CT Injector for TPE-RX
The injector is transferred to RELAX

CT Injector installed in TPE-RX
(vertical injection)
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Dependence of CT velocity on V,,
(Y. Kikuchi et al. , Univ. Hyogo)

CT Speed required for
Injection to RELAX:
~35 km/s



Rapid decrease in double-filter SXR temperature is observed
at the relaxation event
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» Discrete relaxation event is observed during the flat-
topped current phase.

» The electron temperature estimated from double-
filtered SXR signals decreases as a resut of relaxation.



Rapid decrease is also observed in Thomson temperature
at the relaxation event
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The temperature decrease may be related to magnetic
reconnection associated with MHD relaxation cycle

Relaxed state Chirikov parameter
1 Amn + Am'n'
s~0 =5
| Fon = T |

Profile flattening

Resistive diffusion => Relaxation

=> Tearing reconr@tio

=N

Fully 3D
reconnection

S~1 S>1

Overlapped islands Stochastic region

Question associated
with CTinjection:

- How does the
reconnection evolve
after the CT injection?




Summary

As the performance of RELAX plasmas is improved, we are in a
good position to verify bootstrap current in a low-A RFP.

Further efforts to obtain higher temperature and higher density
are in progress for high-beta plasmas with improved
performance.

- Electron temperature=>high current, PPCD?
- Electron density=>fast gas puffing.

A scenario for achieving high performance QSH with good
controllability is required.

Evaluation of CT injection (for helicity injection) in current rise
phase to save poloidal flux is in progress.



Thank you for your attention.



3-D MHD simulation study on formation process of
helical RFP state in low-A configuration

Simulation Model _nonlinear MHD
- resistive Numerical geometry
Governing equations -compressible
0
L =9 (pu),

ot

ou u? :
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+ %V[vp(v u)|-Vx(vpw),

_ 1d s1ze

~1x107°| 8"
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—=-VxE, . -1/2 5
ot H=(nv) " °=10
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1oj =V xB, MHD solver:

MIPS : MHD Infrastructure for Plasma Simulation
@=VxLU. (Y. Todo et al., Plasma Fusion Res. 5 (2010) S2062.)



Nonlinear evolution of iIso-pressure contours
to the helical RFP state

(Mizuguchi et al., PPCF 2012)



