A field theory approach to plasma self-organization

Setthivoine You

Jens von der Linden, E. Sander Lavine, Alexander Card, Evan G. Carroll, Manuel Azuara-Rosales University of Washington

This work was supported by the U.S. Dept. of Energy Early Career Award DE-SC0010340. US-Japan Compact Torus Workshop, Irvine, CA (Aug 2016)

CT configuration from self-organization

Spontaneous formation of new configuration subj. to constraint, init. conditions, to reduce or maximize energy.

1

e.g.	Magnetostatic single fluid [Taylor, Woltjer, etc.]; Flowing two-fluid [Steinhauer, Ishida, etc.] Flowing neutral fluid [Moffat, etc.]
Strength	No need for detailed dynamics; Can predict final state from initial & boundary conditions.
Q:	Open configurations ? pressure, density , temperature gradients ? L-H transition ? kinetic regime ? magnetic dynamo ? dynamic collimation and stability ? relativity ?

A:

(partial) Can transform plasma physics to a generalized form of Maxwell's equations, valid in all regimes. Maybe simpler to solve full system in this frame of reference ? In physics, often, a suitable transformation simplifies analysis.

Demonstrate

The equations of motion can be expressed as Generalized Maxwell Equations

Wanted the simplest, most general expression for plasmas.

Helicity evolution valid in kinetic regimes, relativistic regimes too

Wanted to see if helicity conservation, plasma self-organization, relaxation valid in/across regimes beyond fluid regime.

Criterion for helicity conservation vs energy conservation

Wanted to have a general criterion for when/where helicity is conserved

Helicity conversion from one form to another

Conversion of magnetic helicity to flows and vice-versa

Ingredients for magnetic confinement fusion concepts

Define relative canonical helicity $K_{\sigma rel} = \int \vec{P}_{\sigma-} \cdot \vec{\Omega}_{\sigma+} dV$

Define relative canonical helicity $K_{\sigma rel} = \int \vec{P}_{\sigma-} \cdot \vec{\Omega}_{\sigma+} dV$

Reconnection of two flux tubes with three possible results

The model explains why bifurcation in CT formation depends on 1/S*.

Ratio of canon. helicity injection into vortex tube or magnetic flux tube is $\frac{K_i^{\text{ff}}}{K_i^{\psi}} \sim \frac{1}{S^*}$

Maxwell's Eqs. $\Box A_{\mu} = -\mu_0 j_{\mu}$

Kinetic $f_{\sigma}(\vec{x}, \vec{v}, t)$	
Stat. Mech.	
$\frac{df_{\sigma}}{dt} = C$	

Maxwell's Eqs. $: A_{\mu} = -\mu_0 j_{\mu}$

Particle { $q; m$ } $\vec{x}(t)$ $\vec{v}(t)$	
Electrodynamics $\frac{d(\gamma m \vec{v})}{dt} = \vec{F}$	

Kinetic $f_{\sigma}(\vec{x}, \vec{v}, t)$	
Stat. Mech.	
$\frac{df_{\sigma}}{dt} = C$	

Is there a more fundamental p.o.v. ?

Where does the canonical form of the equation of motion come from ? The first two canonical Maxwell's eqs give us a clue:

Canonical Gauss' law (no monopole)	$\nabla \cdot \vec{\Omega} = 0$
------------------------------------	---------------------------------

Canonical Faraday's law $\nabla \times \vec{\Sigma} = -\frac{\partial \vec{\Omega}}{\partial t}$

Canonical Gauss' law

 $\nabla \cdot \vec{\Sigma} = ?$

 $\nabla \times \vec{\Omega} = ?$

Canonical Ampere's law

Is there a more fundamental p.o.v. ?

Where does the canonical form of the equation of motion come from ? The first two canonical Maxwell's eqs give us a clue:

Define a new Lagrangian

Canon. field tensor

S.You, Phys. Plasmas 23, 072108 (2016)

Multi-fluid

 $h_{\sigma fluid} \equiv \int h_{\sigma kin} \, d\vec{v}_{\sigma}$

Particle

Kinetic

In flat space ...

$$\mathcal{L} \equiv \qquad \mathbb{q} \ \vec{v} \cdot \vec{P} - \ \mathbb{q} \ h \ + \frac{1}{2} \epsilon \Sigma^2 - \frac{\Omega^2}{2\mu}$$

Balance between generalized kinetic energy and potential energy (enthalpy). Balance between generalized "electrical" energy (canon. forces) and "magnetic" energy (canon. vorticity)

 $\mathcal{L}_{Maxwell}$ $\mathcal{L}_{e.m.-m}$ \mathcal{L}_{m-m}

Just a reformulation of existing Lagrangians.

New Lagrangians that represent the collective coupling between kinetic distributions, & e.m. fields, between kinetic distributions themselves, and relativistic distributions

Eq. of motion

Insert \mathcal{L} into Euler-Lagrange equation for space coordinates \vec{x} :

$$\Rightarrow \boxed{\mathbb{Q}\left[\vec{\Sigma} + \vec{v} \times \vec{\Omega}\right] = -\nabla\left[\frac{1}{2}\epsilon\Sigma^2 - \frac{\Omega^2}{2\mu}\right]}_{\equiv \vec{R}}$$

Dissipative forces:

Incomplete conversion between canon. "electrical"/"kinetic" energy and canon. "magnetic"/"potential" energy (canon. vorticity). Single particle: $\vec{R}^{par} \simeq 0$ (classical) $\vec{R}^{par} \neq 0$ (relativistic)

Kinetic:

$$\vec{R}_{\sigma}^{kin} \equiv \left(\vec{v}_{\sigma} \cdot \vec{P}_{\sigma}^{par} - h_{\sigma}^{par}\right) \nabla f_{\sigma} - \vec{P}_{\sigma}^{par} \frac{df_{\sigma}}{dt}$$

Fluid:

$$\vec{R}_{\sigma}^{flu} \equiv \vec{R}_{\sigma\alpha} + \vec{R}_{\sigma\sigma} + \vec{R}_{\sigma c} + \vec{R}_{\sigma n}$$

Canon. Maxwell equations

Insert \mathcal{L} into Euler-Lagrange equation for four-field \mathbb{P}_{μ} (with Lorenz gauge):

$$\Leftrightarrow \overline{D_{\mu}\mathbb{F}^{\mu\nu} = -\mu_{\sigma}\mathbb{J}^{\nu}} \qquad \Leftrightarrow \quad \partial_{\mu}\partial^{\mu}\mathbb{P}^{\nu} = -\mu_{\sigma}\mathbb{J}^{\nu}$$
$$\Leftrightarrow \begin{cases} \nabla \cdot \vec{\Sigma} = \frac{\mathbb{Q}}{\epsilon} \\ \nabla \times \vec{\Omega} = \mu \mathbb{Q} \ \vec{v} + \mu\epsilon \frac{\partial \vec{\Sigma}}{\partial t} \qquad \Leftrightarrow \qquad \begin{cases} \Box \ h = -\frac{\mathbb{Q}}{\epsilon} \\ \Box \ \vec{P} = -\mu \mathbb{Q} \ \vec{v} \end{cases}$$
(also gives a canonical Poynting flux equation for $\vec{\Sigma} \times \vec{\Omega}$)
$$d'Alembert wave operator$$

Canon. Maxwell equations

Insert \mathcal{L} into Euler-Lagrange equation for four-field \mathbb{P}_{μ} (with Lorenz gauge):

$$\Leftrightarrow \boxed{D_{\mu}\mathbb{F}^{\mu\nu} = -\mu_{\sigma}\mathbb{J}^{\nu}} \qquad \Leftrightarrow \qquad \partial_{\mu}\partial^{\mu}\mathbb{P}^{\nu} = -\mu_{\sigma}\mathbb{J}^{\nu}$$
eq. of motion !
$$\Leftrightarrow \begin{cases} \boxed{\nabla \cdot \vec{\Sigma} = \frac{\mathbb{Q}}{\epsilon}} \\ \nabla \times \vec{\Omega} = \mu \mathbb{Q} \vec{v} + \mu\epsilon \frac{\partial \vec{\Sigma}}{\partial t} \end{cases} \qquad \Leftrightarrow \qquad \begin{cases} \boxed{\cdot} h = -\frac{\mathbb{Q}}{\epsilon} \\ \boxed{\cdot} \vec{P} = -\mu \mathbb{Q} \vec{v} \end{cases}$$
(also gives a canonical Poynting flux equation for $\vec{\Sigma} \times \vec{\Omega}$)
$$d'Alembert wave operator$$

Hamiltonian, energy evolution

Perform Legendre transformation of \mathcal{L}

$$\Rightarrow \qquad \mathcal{H} = \frac{1}{2}\epsilon\Sigma^2 + \frac{\Omega^2}{2\mu} + \mathbf{q}h$$

Sum of energy density of the plasma field and the source enthalpy (if any)

Equivalent derivation of eq. of motion $\operatorname{qn}[\vec{\Sigma}_{\sigma} + \vec{v}_{\sigma} \times \vec{\Omega}_{\sigma}] = -\vec{R}_{\sigma}$, by inserting \mathcal{H} into Hamilton's third equation:

$$\frac{\partial \mathcal{H}}{\partial q_i} = -\dot{p}_i \Leftrightarrow \frac{\partial \vec{P}}{\partial t} + (\vec{v} \cdot \nabla)\vec{P} = -\nabla \mathcal{H}$$

Using the Poynting theorem for $\vec{\Sigma}$, $\vec{\Omega}$ in the Hamilton equation $\frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$ gives energy evolution equation $\Rightarrow \frac{dH_{\sigma}}{dt} = \int \mathbb{Q} \frac{\partial h_{\sigma}}{dt} dV - \int \mathbb{Q} \vec{\Sigma}_{\sigma} \cdot \vec{v}_{\sigma} dV - \int \frac{\vec{\Sigma}_{\sigma} \times \vec{\Omega}_{\sigma}}{\mu_{\sigma}} \cdot d\vec{S} + \int \mathcal{H}_{\sigma} \vec{u}_{\sigma} \cdot d\vec{S}$ (3)

Therefore

Change of (species) helicity vs change in energy ?

Take the ratio of evolution equations (Eq. 1)/(Eq. 3). e.g. isolated, fixed, non-conservative forces

$$\frac{\Delta K_{\sigma}/K_{\sigma 0}}{\Delta H_{\sigma}/H_{\sigma 0}} = 2 \frac{\int \vec{R}_{\sigma} \cdot \vec{\Omega}_{\sigma} \, dV}{\int \vec{R}_{\sigma} \cdot \vec{v}_{\sigma} \, dV} \frac{H_{\sigma 0}}{K_{\sigma 0}} \simeq 2 \frac{\Omega_{\sigma}}{v_{\sigma}} \frac{H_{\sigma 0}}{K_{\sigma 0}} \sim \frac{\rho_{\sigma}}{L_s} \frac{H_{\sigma 0}}{K_{\sigma 0}}$$

Density scale length:

shallow \Rightarrow species helicity changes little steep \Rightarrow species helicity changes a lot MST experiment:

 $H_{e0} \sim W_{mag} \sim 50 \text{ kJ}$ $\Omega_e \sim \rho_{ce} B \sim 0.2 \text{ kg m}^{-3} \text{ s}^{-1}$ $n_e \sim 10^{19} \text{ m}^{-3}$ $B_{tor} \sim 0.12 \text{ T}$ $T_e \sim 300 \text{ eV}$ $K_{e0} \sim 23 \text{ mWb}^2$

=> magnetic energy is dissipated 33 times more than magnetic helicity in an isolated, purely dissipative, magnetically dominated system.

```
1/L_s \equiv 2(1/L_{circ} + 1/r_L)
```

Helicity conversion at the edge of plasmas where density gradients are steep

Density scale length:

shallow \Rightarrow species helicity changes little steep \Rightarrow species helicity changes a lot

L-H transition as helicity-constrained relaxation ? use kinetic form of canon. Maxwell's eq. ? in spheromak?

First, examine helicity transport in cyl. geom.

Generalization of $\nabla n \cdot \vec{B} = 0 \Rightarrow \nabla h_{\sigma} \cdot \vec{\Omega}_{\sigma} = 0$ Dot steady-state $\vec{\Sigma}_{\sigma} + \vec{v}_{\sigma} \times \vec{\Omega}_{\sigma} \simeq 0$ with $\vec{\Omega}_{\sigma}$

Generalized induction equation for $\vec{\Omega}_{\sigma}$ Take curl of $\vec{\Sigma}_{\sigma} + \vec{v}_{\sigma} \times \vec{\Omega}_{\sigma} \simeq 0$

So plasma motion ⇔ canonical flux tube motion in many regimes beyond magnetostatic.

Mochi experiment just became operational

Designed to study interaction between flows and magnetic fields

End

Energy equation

Insert \mathcal{L} into Euler-Lagrange equation for time t:

$$\Rightarrow \left[\mathbb{q} \ \vec{v} \cdot \frac{\partial \vec{P}}{\partial t} = -\frac{\partial}{\partial t} \left[\frac{1}{2} \epsilon \mathbb{E}^2 - \frac{\Omega^2}{2\mu} \right] \right]$$

If the "plasma field" has a time dependence, energy changes.

