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CT configuration from self-organization
Spontaneous formation of new configuration subj. to constraint, init.
conditions, to reduce or maximize energy.
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e.g. Magnetostatic single fluid [Taylor, Woltjer, etc.];
Flowing two-fluid [Steinhauer, Ishida, etc.]
Flowing neutral fluid [Moffat, etc.]

Strength No need for detailed dynamics;
Can predict final state from initial & boundary conditions.

Q: Open configurations ? pressure, density , temperature
gradients ? L-H transition ? kinetic regime ? magnetic
dynamo ? dynamic collimation and stability ? relativity ?

A: (partial) Can transform plasma physics to a generalized
form of Maxwell’s equations, valid in all regimes. Maybe
simpler to solve full system in this frame of reference ? In
physics, often, a suitable transformation simplifies
analysis.



Demonstrate

The equations of motion can be expressed as Generalized Maxwell Equations
Wanted the simplest, most general expression for plasmas.

Helicity evolution valid in kinetic regimes, relativistic regimes too
Wanted to see if helicity conservation, plasma self-organization, relaxation valid 
in/across regimes beyond fluid regime.

Criterion for helicity conservation vs energy conservation
Wanted to have a general criterion for when/where helicity is conserved

Helicity conversion from one form to another
Conversion of magnetic helicity to flows and vice-versa
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Ingredients for magnetic confinement fusion 
concepts

ITER Physics Basis, 2007, Ch. 2 p.S413



Define relative canonical helicity 𝐾𝜎𝑟𝑒𝑙 = −𝑃𝜎 ⋅ Ω𝜎+ 𝑑𝑉

Can. momentum Ԧ𝑃𝜎 = 𝑚𝜎𝑢𝜎 + 𝑞𝜎 Ԧ𝐴

Can. vorticity Ω𝜎 = 𝛻 × Ԧ𝑃𝜎

Relative Ԧ𝑋± = Ԧ𝑋 ± Ԧ𝑋ref

Also becomes 𝐾𝜎 = 𝑚𝜎
2 𝐾𝑘𝑖𝑛𝜎 + 𝑚𝜎𝑞𝜎 𝐾𝑐𝑟𝑠𝜎 + 𝑞𝜎

2 𝐾𝑚𝑎𝑔

න Ԧ𝐴 ⋅ 𝐵 𝑑𝑉

magnetic helicity

න𝑢𝜎 ⋅ 𝜔𝜎 𝑑𝑉

kinetic helicity

2න𝑢𝜎 ⋅ 𝐵 𝑑𝑉

cross helicity

𝑑𝐾𝑒𝑟𝑒𝑙
𝑑𝑡

= −
𝑑𝐾𝑖𝑟𝑒𝑙
𝑑𝑡

= −2න𝑅 ⋅ Ω 𝑑𝑉 + 2න
𝑆𝑠𝑒𝑝

ℎ𝑖 − ℎ𝑒 Ω ⋅ 𝑑 Ԧ𝑆 +⋯

𝑞𝜎𝜙 +
1

2
𝑚𝜎𝑢𝜎

2 +
𝒫𝜎
𝑛𝜎

enthalpy

S.You, Phys. Plasmas 19, 092107 (2012); S. You, Plasma Phys. Control. Fusion, 56, 064007 (2014)

𝐵

Ԧ𝐽

𝑢𝑖

𝑢𝑒

𝑃𝑖

𝑃𝑒

Ω𝑖

Ω𝑒

eqs. of motion

(1)

e.g.

magnetic flux tube canonical flux tube
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Can. momentum Ԧ𝑃𝜎 = 𝑚𝜎𝑢𝜎 + 𝑞𝜎 Ԧ𝐴
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Also becomes 𝐾𝜎 = 𝑚𝜎
2 𝐾𝑘𝑖𝑛𝜎 + 𝑚𝜎𝑞𝜎 𝐾𝑐𝑟𝑠𝜎 + 𝑞𝜎

2 𝐾𝑚𝑎𝑔

න Ԧ𝐴 ⋅ 𝐵 𝑑𝑉

magnetic helicity

න𝑢𝜎 ⋅ 𝜔𝜎 𝑑𝑉

kinetic helicity

2න𝑢𝜎 ⋅ 𝐵 𝑑𝑉

cross helicity

𝑑𝐾𝑒𝑟𝑒𝑙
𝑑𝑡

= −
𝑑𝐾𝑖𝑟𝑒𝑙
𝑑𝑡

= −2න𝑅 ⋅ Ω 𝑑𝑉 + 2න
𝑆𝑠𝑒𝑝

ℎ𝑖 − ℎ𝑒 Ω ⋅ 𝑑 Ԧ𝑆 +⋯

𝑞𝜎𝜙 +
1

2
𝑚𝜎𝑢𝜎

2 +
𝒫𝜎
𝑛𝜎

enthalpy

eqs. of motion

Note:

𝛻 ⋅ Ω = 0

(1)

e.g.

S.You, Phys. Plasmas 19, 092107 (2012); S. You, Plasma Phys. Control. Fusion, 56, 064007 (2014)

𝐵

Ԧ𝐽

𝑢𝑖

𝑢𝑒

𝑃𝑖

𝑃𝑒

Ω𝑖

Ω𝑒

Define relative canonical helicity 𝐾𝜎𝑟𝑒𝑙 = −𝑃𝜎 ⋅ Ω𝜎+ 𝑑𝑉

magnetic flux tube canonical flux tube
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Reconnection of two flux tubes with three 
possible results

Two magnetic flux tubes
Half twist each

One magnetic flux 
tube, half twist
One vorticity flow, half 
twist

Two flow vorticity flux 
tubes.
Half twist each

S.You, Plasmas Phys. Contol. Fusion, 56, 064007 (2014)5



The model explains why bifurcation in CT formation depends on 1/S*.

S.You, Phys. Plasmas 19, 092107 (2012); E. Kawamori et al, Nucl. Fusion 45, 843 (2005)

+𝑣𝐴

−𝑣𝐴

Ratio of canon. helicity injection into vortex tube or magnetic flux tube is  
𝐾𝑖
𝒻

𝐾𝑖
𝜓 ∼

1

𝑆∗

Counter-
helicity 
merging

න𝛻 × 𝑢𝑖 ⋅ 𝑑 Ԧ𝑆

න𝐵 ⋅ 𝑑 Ԧ𝑆

⇒ Δℎ ≃ 𝑚𝑖𝑣𝐴
2

Ψ = 𝑚𝑖𝒻 + 𝑞𝑖𝜓

FRC

Spheromak

ሶ𝐾𝑖 = 𝑚𝑖 Δℎ 𝒻 + 𝑞𝑖 Δℎ 𝜓

𝑆∗ ≡
𝐿

𝛿𝑖
=

𝐿

ൗ𝑐 𝜔𝑝𝑖

=
𝐿

𝜌𝑖 ൗ
𝑣𝐴

𝑣𝑡ℎ𝑖

Relaxes to spheromak

Relaxes to FRC
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Particle {𝒒;𝒎}
Ԧ𝑥 𝑡
Ԧ𝑣 𝑡

Electrodynamics
𝑑 𝛾𝑚 Ԧ𝑣

𝑑𝑡
= Ԧ𝐹

Kinetic
𝑓𝜎 Ԧ𝑥, Ԧ𝑣, 𝑡

Stat. Mech.

𝑑𝑓𝜎
𝑑𝑡

= 𝐶

Multi-fluid
𝑛𝜎 Ԧ𝑥, 𝑡
𝑢𝜎 Ԧ𝑥, 𝑡
𝒫𝜎 Ԧ𝑥, 𝑡

Fluid eqs. 
of motion

x 2

MHD
𝑛 Ԧ𝑥, 𝑡

𝑈 Ԧ𝑥, 𝑡
𝒫 Ԧ𝑥, 𝑡

Single fluid eq. 
of motion

+
Ohm’s law

𝐸 + 𝑈 × 𝐵 = …

Canonical Helicity p.o.v
𝐾𝜎 = 𝐾𝑘𝑖𝑛 + 𝐾𝑐𝑟𝑜𝑠𝑠 + 𝐾𝑚𝑎𝑔

𝑑𝐾𝜎
𝑑𝑡

= ⋯

System 
configuration

𝐵 Ԧ𝑥 , 𝑢 Ԧ𝑥
(quasi static 
evolution)

න…𝑑𝑉

Multi-fluid

𝑃𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝜌𝜎𝑢𝜎 + 𝜌𝑐𝜎 Ԧ𝐴

ℎ𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝜌𝑐2 +
1

2
𝜌𝜎𝑢𝜎

2 + 𝜌𝑐𝜙 + 𝜌𝜙𝑔 + 𝒫𝜎

𝑅𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝑅′ + 𝑃𝜎𝑓𝑙𝑢𝑖𝑑𝛻 ⋅ 𝑢𝜎 + ℒ𝜎𝑓𝑙𝑢𝑖𝑑
𝛻𝑛

𝑛

Eqs. of motion (canonical form)

⇔
𝜕𝑃

𝜕𝑡
− 𝑣 × Ω = −𝛻ℎ − 𝑅

no-work     conserv.   non-cons.

⇔ Σ+ Ԧ𝑣 × Ω = 𝑅

Canonical “electric field” (force-field)

Σ ≡ −𝛻ℎ −
𝜕𝑃

𝜕𝑡

Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇
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𝑑𝑓𝜎
𝑑𝑡

= 𝐶
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𝑛𝜎 Ԧ𝑥, 𝑡
𝑢𝜎 Ԧ𝑥, 𝑡
𝒫𝜎 Ԧ𝑥, 𝑡

Fluid eqs. 
of motion

x 2

MHD
𝑛 Ԧ𝑥, 𝑡

𝑈 Ԧ𝑥, 𝑡
𝒫 Ԧ𝑥, 𝑡

Single fluid eq. 
of motion

+
Ohm’s law

𝐸 + 𝑈 × 𝐵 = …

Canonical Helicity p.o.v
𝐾𝜎 = 𝐾𝑘𝑖𝑛 + 𝐾𝑐𝑟𝑜𝑠𝑠 + 𝐾𝑚𝑎𝑔

𝑑𝐾𝜎
𝑑𝑡

= ⋯

System 
configuration

𝐵 Ԧ𝑥 , 𝑢 Ԧ𝑥
(quasi static 
evolution)

න…𝑑𝑉

Multi-fluid

𝑃𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝜌𝜎𝑢𝜎 + 𝜌𝑐𝜎 Ԧ𝐴

ℎ𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝜌𝑐2 +
1

2
𝜌𝜎𝑢𝜎

2 + 𝜌𝑐𝜙 + 𝜌𝜙𝑔 + 𝒫𝜎

𝑅𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝑅′ + 𝑃𝜎𝑓𝑙𝑢𝑖𝑑𝛻 ⋅ 𝑢𝜎 + ℒ𝜎𝑓𝑙𝑢𝑖𝑑
𝛻𝑛

𝑛

Eqs. of motion (canonical form)

⇔
𝜕𝑃

𝜕𝑡
− 𝑣 × Ω = −𝛻ℎ − 𝑅

no-work     conserv.   non-cons.

⇔ Σ+ Ԧ𝑣 × Ω = 𝑅

Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇

Note:

𝛻 × Σ = −
𝜕Ω

𝜕𝑡

Canonical “electric field” (force-field)

Σ ≡ −𝛻ℎ −
𝜕𝑃

𝜕𝑡7
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2 + 𝜌𝑐𝜙 + 𝜌𝜙𝑔 + 𝒫𝜎
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⇔
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no-work     conserv.   non-cons.

⇔ Σ+ Ԧ𝑣 × Ω = 𝑅
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Particle

𝑃𝑝𝑎𝑟𝑡 ≡ 𝑚 Ԧ𝑣 + 𝑞 Ԧ𝐴

ℎ𝑝𝑎𝑟𝑡 ≡ 𝑚𝑐2 +
1

2
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𝑅𝑝𝑎𝑟𝑡 ≡ 0

Canonical “electric field” (force-field)

Σ ≡ −𝛻ℎ −
𝜕𝑃

𝜕𝑡8
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ℎ𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝜌𝑐2 +
1

2
𝜌𝜎𝑢𝜎

2 + 𝜌𝑐𝜙 + 𝜌𝜙𝑔 + 𝒫𝜎

𝑅𝜎𝑓𝑙𝑢𝑖𝑑 ≡ 𝑅′ + 𝑃𝜎𝑓𝑙𝑢𝑖𝑑𝛻 ⋅ 𝑢𝜎 + ℒ𝜎𝑓𝑙𝑢𝑖𝑑
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Eqs. of motion (canonical form)

⇔
𝜕𝑃

𝜕𝑡
− 𝑣 × Ω = −𝛻ℎ − 𝑅

no-work     conserv.   non-cons.

⇔ Σ+ Ԧ𝑣 × Ω = 𝑅

Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇

Particle

𝑃𝑝𝑎𝑟𝑡 ≡ 𝛾𝑚 Ԧ𝑣 + 𝑞 Ԧ𝐴

ℎ𝑝𝑎𝑟𝑡 ≡ 𝛾𝑚𝑐2 + 𝑞𝜙

𝑅𝑝𝑎𝑟𝑡 ≡ 0

Kinetic

𝑃𝜎𝑘𝑖𝑛 ≡ 𝑓𝑃𝑝𝑎𝑟𝑡 = 𝑓𝑚𝜎 Ԧ𝑣 + 𝑓𝑞𝜎 Ԧ𝐴

ℎ𝜎𝑘𝑖𝑛 ≡ 𝑓ℎ𝑝𝑎𝑟𝑡 = ⋯

𝑅𝜎𝑘𝑖𝑛 ≡ −𝑃𝑝𝑎𝑟𝑡𝐶 + 𝛻𝑣 𝑓 Ԧ𝑎𝑃𝑝𝑎𝑟𝑡 + ℒ𝑝𝑎𝑟𝑡𝛻𝑓

(2)

Canonical “electric field” (force-field)

Σ ≡ −𝛻ℎ −
𝜕𝑃

𝜕𝑡9



Is there a more fundamental p.o.v. ? 

Where does the canonical form of the equation of motion come from ? 
The first two canonical Maxwell’s eqs give us a clue:

Canonical Gauss’ law (no monopole)
𝛻 ⋅ Ω = 0

Canonical Faraday’s law 𝛻 × Σ = −
𝜕Ω

𝜕𝑡

Canonical Gauss’ law
𝛻 ⋅ Σ = ?

Canonical Ampere’s law
𝛻 × Ω = ?

10



Is there a more fundamental p.o.v. ? 

Where does the canonical form of the equation of motion come from ? 
The first two canonical Maxwell’s eqs give us a clue:

Canonical Gauss’ law (no monopole)
𝛻 ⋅ Ω = 0

Canonical Faraday’s law 𝛻 × Σ = −
𝜕Ω

𝜕𝑡

Canonical Gauss’ law
𝛻 ⋅ Σ = ?

Canonical Ampere’s law
𝛻 × Ω = ?

Lagrangian
ℒ

Euler-Lagrange eq.
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Define a new Lagrangian

ℒ𝜎 ≡ 𝕁𝜇ℙ𝜇 −
1

4𝜇𝜎
𝔽𝜇𝜈𝔽

𝜇𝜈 + ℒ𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛𝐻𝑖𝑙𝑏𝑒𝑟𝑡

Coupling interaction between 
“sources” 𝕁𝜇 and “field” ℙ𝜇

Canon. four-current
𝕁𝜇 ≡ 𝕢

𝜕𝑥𝜇

𝜕𝑡
=

𝕢𝑐

Ԧ𝕛 = 𝕢 Ԧ𝑣

Canon. four-field
ℙ𝜇 ≡

ℎ

𝑐
, 𝑃

Canon. charge density (switch)
𝕢 ≡ 𝜖𝜎𝛻 ⋅ 𝑅𝜎 − Ԧ𝑣𝜎 × Ω𝜎

Canon. field tensor 𝔽𝜇𝜈 ≡ 𝜕𝜇ℙ𝜈 − 𝜕𝜈ℙ𝜇

Coupling interaction between 
“field” ℙ𝜇 components (its derivatives) Particle

𝑃𝒑𝒂𝒓 ≡ 𝜸𝒎𝒗 + 𝒒𝑨

ℎ𝑝𝑎𝑟 ≡ 𝛾𝑚𝑐2 + 𝑞𝜙

Kinetic

𝑃𝒌𝒊𝒏 ≡ 𝒇 𝑷𝒑𝒂𝒓
ℎ𝑘𝑖𝑛 ≡ 𝑓 ℎ𝑝𝑎𝑟

Multi-fluid

𝑃𝜎𝑓𝑙𝑢𝑖𝑑 ≡ න𝑃𝝈𝒌𝒊𝒏 𝑑 Ԧ𝑣𝜎

ℎ𝜎𝑓𝑙𝑢𝑖𝑑 ≡ නℎ𝜎𝑘𝑖𝑛 𝑑 Ԧ𝑣𝜎

S.You, Phys. Plasmas 23, 072108 (2016)11



ℒ ≡ 𝕢 Ԧ𝑣 ⋅ 𝑃 − 𝕢 ℎ +
1

2
𝜖Σ2 −

Ω2

2𝜇

Balance between 
generalized kinetic 
energy and potential
energy (enthalpy).

Balance between generalized 
“electrical” energy (canon. 
forces) and “magnetic” energy 
(canon. vorticity)

In flat space …

12



ℒ ≡ 𝕢 Ԧ𝑣 ⋅ 𝑃 − 𝕢 ℎ +
1

2
𝜖Σ2 −

Ω2

2𝜇

Particle

𝑃𝒑𝒂𝒓 ≡ 𝜸𝒎𝒗 + 𝒒𝑨

ℎ𝑝𝑎𝑟 ≡ 𝛾𝑚𝑐2 + 𝑞𝜙

e.g. particle in e.m. field

ℒ𝑝𝑎𝑟𝑡 = −
1

𝛾
𝑚𝑐2 + 𝑞 Ԧ𝑣 ⋅ Ԧ𝐴 − 𝑞𝜙

Kinetic

𝑃𝒌𝒊𝒏 ≡ 𝒇 𝑷𝒑𝒂𝒓
ℎ𝑘𝑖𝑛 ≡ 𝑓 ℎ𝑝𝑎𝑟

Multi-fluid

𝑃𝜎𝑓𝑙𝑢𝑖𝑑 ≡ න𝑃𝝈𝒌𝒊𝒏 𝑑 Ԧ𝑣𝜎

ℎ𝜎𝑓𝑙𝑢𝑖𝑑 ≡ නℎ𝜎𝑘𝑖𝑛 𝑑 Ԧ𝑣𝜎
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ℒ ≡ 𝕢 Ԧ𝑣 ⋅ 𝑃 − 𝕢 ℎ +
1

2
𝜖Σ2 −

Ω2

2𝜇

Field

1

2
𝜖0𝐸

2 −
𝐵2

2𝜇0
+ 2𝑞

1

2
𝜖𝐸 ⋅ Σ′ −

𝐵 ⋅ Ω′

𝜇
+

1

2
𝜖Σ′

2
−
Ω′2

2𝜇

ℒ𝑀𝑎𝑥𝑤𝑒𝑙𝑙 ℒ𝑒.𝑚.−𝑚 ℒ𝑚−𝑚

Kinetic      Σ = 𝑓𝜎𝑞𝜎𝐸 + Σ′ Ω = 𝑓𝜎𝑞𝜎𝐵 + Ω′

Particle      Σ = 𝑞𝜎𝐸 + Σ′ Ω = 𝑞𝜎𝐵 + Ω′

Fluid Σ = 𝜌𝜎𝐸 + Σ′ Ω = 𝜌𝜎𝐵 + Ω′

Σ = −𝛻ℎ −
𝜕𝑃

𝜕𝑡

= 𝑞𝜎 𝐸 +⋯

= −𝑞𝜎𝛻𝜙 − 𝑞𝜎
𝜕 Ԧ𝐴

𝜕𝑡
+ …
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ℒ ≡ 𝕢 Ԧ𝑣 ⋅ 𝑃 − 𝕢 ℎ +
1

2
𝜖Σ2 −

Ω2

2𝜇

Field

1

2
𝜖0𝐸

2 −
𝐵2

2𝜇0
+ 2𝑞

1

2
𝜖𝐸 ⋅ Σ′ −

𝐵 ⋅ Ω′

𝜇
+

1

2
𝜖Σ′

2
−
Ω′2

2𝜇

ℒ𝑀𝑎𝑥𝑤𝑒𝑙𝑙 ℒ𝑒.𝑚.−𝑚 ℒ𝑚−𝑚

Kinetic      Σ = 𝑓𝜎𝑞𝜎𝐸 + Σ′ Ω = 𝑓𝜎𝑞𝜎𝐵 + Ω′

Particle      Σ = 𝑞𝜎𝐸 + Σ′ Ω = 𝑞𝜎𝐵 + Ω′

Fluid Σ = 𝜌𝜎𝐸 + Σ′ Ω = 𝜌𝜎𝐵 + Ω′

New Lagrangians that represent the 
collective coupling between kinetic 
distributions, & e.m. fields, between 
kinetic distributions themselves, and 
relativistic distributions

Just a reformulation of 
existing Lagrangians.
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Eq. of motion

Insert ℒ into Euler-Lagrange equation for space coordinates Ԧ𝑥: 

⇒ 𝕢 Σ + v × Ω = −𝛻
1

2
𝜖Σ2 −

Ω2

2𝜇

Dissipative forces:

Incomplete conversion between
canon. “electrical”/"kinetic“ energy
and canon. “magnetic”/"potential“
energy (canon. vorticity).

Single particle:

𝑅𝑝𝑎𝑟 ≃ 0 (classical)

𝑅𝑝𝑎𝑟 ≠ 0 (relativistic)

Kinetic:

𝑅𝜎
𝑘𝑖𝑛 ≡ Ԧ𝑣𝜎 ⋅ 𝑃𝜎

𝑝𝑎𝑟
− ℎ𝜎

𝑝𝑎𝑟
𝛻𝑓𝜎 − 𝑃𝜎

𝑝𝑎𝑟 𝑑𝑓𝜎
𝑑𝑡

Fluid:

𝑅𝜎
𝑓𝑙𝑢

≡ 𝑅𝜎𝛼 + 𝑅𝜎𝜎 + 𝑅𝜎𝑐 + 𝑅𝜎𝑛

≡ 𝑅

14



Canon. Maxwell equations

Insert ℒ into Euler-Lagrange equation for four-field ℙ𝜇 (with Lorenz gauge): 

⇔ 𝐷𝜇𝔽
𝜇𝜈 = − 𝜇𝜎 𝕁

𝜈 ⇔ 𝜕𝜇𝜕
𝜇ℙ𝜈 = −𝜇𝜎𝕁

𝜈

⇔

𝛻 ⋅ Σ =
𝕢

𝜖

𝛻 × Ω = 𝜇 𝕢 Ԧ𝑣 + 𝜇𝜖
𝜕Σ

𝜕𝑡

⇔ ቐ
⊡ ℎ = −

𝕢

𝜖

⊡ 𝑃 = −𝜇 𝕢 Ԧ𝑣

(also gives a canonical Poynting flux equation for Σ × Ω)

15

d’Alembert wave 
operator



Canon. Maxwell equations

Insert ℒ into Euler-Lagrange equation for four-field ℙ𝜇 (with Lorenz gauge): 

⇔ 𝐷𝜇𝔽
𝜇𝜈 = − 𝜇𝜎 𝕁

𝜈 ⇔ 𝜕𝜇𝜕
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𝜈

⇔

𝛻 ⋅ Σ =
𝕢

𝜖

𝛻 × Ω = 𝜇 𝕢 Ԧ𝑣 + 𝜇𝜖
𝜕Σ

𝜕𝑡

⇔ ቐ
⊡ ℎ = −

𝕢

𝜖

⊡ 𝑃 = −𝜇 𝕢 Ԧ𝑣

(also gives a canonical Poynting flux equation for Σ × Ω)

16

d’Alembert wave 
operator

eq. of motion !



Hamiltonian, energy evolution

Perform Legendre transformation of ℒ

⇒ ℋ =
1

2
𝜖Σ2 +

Ω2

2𝜇
+ 𝕢 ℎ

Sum of energy density of the plasma field and the source enthalpy (if any)

𝜕ℋ

𝜕𝑞𝑖
= − ሶ𝑝𝑖 ⇔

𝜕𝑃

𝜕𝑡
+ Ԧ𝑣 ⋅ 𝛻 𝑃 = −𝛻ℋ

Equivalent derivation of eq. of motion 𝕢 Σ𝜎 + Ԧ𝑣𝜎 × Ω𝜎 = −𝑅𝜎, by 

inserting ℋ into Hamilton’s third equation: 

Using the Poynting theorem for Σ, Ω in the Hamilton equation 
𝜕ℋ

𝜕𝑡
= −

𝜕ℒ

𝜕𝑡
gives energy evolution equation

⇒
𝑑𝐻𝜎
𝑑𝑡

= න𝕢
𝜕ℎ𝜎
𝑑𝑡

𝑑𝑉 − න𝕢 Σ𝜎 ⋅ Ԧ𝑣𝜎 𝑑𝑉 − න
Σ𝜎 × Ω𝜎
𝜇𝜎

⋅ 𝑑 Ԧ𝑆 + නℋ𝜎𝓊𝜎 ⋅ 𝑑 Ԧ𝑆 (3) 
17



Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇

Particle {𝒒;𝒎}
Ԧ𝑥 𝑡
Ԧ𝑣 𝑡

Electrodynamics
𝑑 𝛾𝑚 Ԧ𝑣

𝑑𝑡
= Ԧ𝐹

E.M. Field 

𝐸, 𝐵

𝜙, Ԧ𝐴

𝐴𝜇

E.M. field sources
𝜌𝑐 , Ԧ𝑗

𝑗𝜇

Kinetic
𝑓𝜎 Ԧ𝑥, Ԧ𝑣, 𝑡

Stat. Mech.

𝑑𝑓𝜎
𝑑𝑡

= 𝐶

Multi-fluid
𝑛𝜎 Ԧ𝑥, 𝑡
𝑢𝜎 Ԧ𝑥, 𝑡
𝒫𝜎 Ԧ𝑥, 𝑡

Fluid eqs. 
of motion

x 2

MHD
𝑛 Ԧ𝑥, 𝑡

𝑈 Ԧ𝑥, 𝑡
𝒫 Ԧ𝑥, 𝑡

Single fluid eq. 
of motion

+
Ohm’s law

𝐸 + 𝑈 × 𝐵 = …

Choose

averaging

c.o.m.

Solve
[integrate]

lots of 
particles

Solve
[integrate]
𝑓 Ԧ𝑥, 𝑡

Energy p.o.v
𝛿𝑊

System state
stability, etc.

න𝑈 ⋅ … 𝑑𝑉

Canonical Helicity p.o.v
𝐾𝜎 = 𝐾𝑘𝑖𝑛 + 𝐾𝑐𝑟𝑜𝑠𝑠 + 𝐾𝑚𝑎𝑔

𝑑𝐾𝜎
𝑑𝑡

= ⋯

𝕂 ≡ 𝐾𝑖 + 𝐾𝑒 = constant

System 
configuration

𝐵 Ԧ𝑥 , 𝑢 Ԧ𝑥
(quasi static 
evolution)

න…𝑑𝑉

Dynamics
Evolution, waves, 

etc.

Eqs. of motion (canonical form)

𝕢 Σ + Ԧ𝑣 × Ω = 𝑅 ⇔ 𝐷𝜇𝔽
𝜇𝜈 = −𝜇𝜎𝕁

𝜈

Therefore

Multi-fluid

𝑃𝜎𝑓𝑙𝑢𝑖𝑑 ≡ න𝑃𝝈𝒌𝒊𝒏 𝑑 Ԧ𝑣𝜎

ℎ𝜎𝑓𝑙𝑢𝑖𝑑 ≡ නℎ𝜎𝑘𝑖𝑛 𝑑 Ԧ𝑣𝜎

Particle

𝑃𝒑𝒂𝒓 ≡ 𝜸𝒎𝒗+ 𝒒𝑨

ℎ𝑝𝑎𝑟 ≡ 𝛾𝑚𝑐2 + 𝑞𝜙

Kinetic

𝑃𝒌𝒊𝒏 ≡ 𝒇 𝑷𝒑𝒂𝒓
ℎ𝑘𝑖𝑛 ≡ 𝑓 ℎ𝑝𝑎𝑟

ℒ𝜎 ≡ 𝕁𝜈ℙ𝜈 −
1

4𝜇𝜎
𝔽𝜇𝜈𝔽

𝜇𝜈

Multi-fluid

𝑅𝜎𝑓𝑙𝑢𝑖𝑑 = 𝑅𝝈𝜶 + 𝑹𝝈𝝈 + 𝑹𝝈𝒄 + 𝑹𝝈𝒏

Particle

𝑅𝑝𝑎𝑟𝑡 ≃ 0

Kinetic

𝑅𝜎𝑘𝑖𝑛 = Ԧ𝑣𝝈 ⋅ 𝑷𝝈𝒑𝒂𝒓 − ℎ𝜎𝑝𝑎𝑟 𝛻𝑓 − 𝑃𝜎𝑝𝑎𝑟
𝑑𝑓𝜎
𝑑𝑡

Can express eq. of motion as generalized Maxwell equations.
Canonical helicity transport is valid at all regimes.
Helicity vs energy conservation depends on density scale length.
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Change of (species) helicity vs change in energy ?

Take the ratio of evolution equations (Eq. 1)/(Eq. 3).

e.g. isolated, fixed, non-conservative forces

ΤΔ𝐾𝜎 𝐾𝜎0
ΤΔ𝐻𝜎 𝐻𝜎0

= 2
𝑅𝜎 ⋅ Ω𝜎 𝑑𝑉

𝑅𝜎 ⋅ Ԧ𝑣𝜎 𝑑𝑉

𝐻𝜎0
𝐾𝜎0

≃ 2
Ω𝜎
𝑣𝜎

𝐻𝜎0
𝐾𝜎0

∼
𝜌𝜎
𝐿𝑠

𝐻𝜎0
𝐾𝜎0

Τ1 𝐿𝑠 ≡ 2 Τ1 𝐿𝑐𝑖𝑟𝑐 + Τ1 𝑟𝐿

19

MST experiment:
𝐻𝑒0 ∼ 𝑊𝑚𝑎𝑔 ∼ 50 kJ

Ω𝑒 ∼ 𝜌𝑐𝑒𝐵 ∼ 0.2 kg m-3 s-1

𝑛𝑒 ∼ 1019 m-3

𝐵𝑡𝑜𝑟 ∼ 0.12 T
𝑇𝑒 ∼ 300 eV
𝐾𝑒0 ∼ 23 mWb2

=>  magnetic energy is 
dissipated 33 times more than 
magnetic helicity in an isolated, 
purely dissipative, magnetically 
dominated system. Density scale length:

shallow ⇒ species helicity changes little
steep ⇒ species helicity changes a lot



Helicity conversion at the edge of plasmas 
where density gradients are steep

21

Density scale length:
shallow ⇒ species helicity changes little
steep ⇒ species helicity changes a lot

L-H transition as 
helicity-constrained 
relaxation ? use 
kinetic form of canon. 
Maxwell’s eq. ? in 
spheromak ?



First, examine helicity transport in cyl. geom.

22

Generalization of 𝛻𝑛 ⋅ 𝐵 = 0 ⇒ 𝛻ℎ𝜎 ⋅ Ω𝜎 = 0

Dot steady-state Σ𝜎 + Ԧ𝑣𝜎 × Ω𝜎 ≃ 0 with Ω𝜎

Generalized induction equation for Ω𝜎
Take curl of Σ𝜎 + Ԧ𝑣𝜎 × Ω𝜎 ≃ 0

So plasma motion ⇔ canonical flux tube motion in many 
regimes beyond magnetostatic.

M 2-9 Butterfly nebula



Mochi experiment just became operational
Designed to study interaction between flows and magnetic fields
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End



Energy equation

Insert ℒ into Euler-Lagrange equation for time 𝑡: 

⇒ 𝕢 Ԧ𝑣 ⋅
𝜕𝑃

𝜕𝑡
= −

𝜕

𝜕𝑡

1

2
𝜖𝔼2 −

Ω2

2𝜇

If the “plasma field” has a time 
dependence, energy changes.



Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇

Particle {𝒒;𝒎}
Ԧ𝑥 𝑡
Ԧ𝑣 𝑡

Electrodynamics
𝑑 𝛾𝑚 Ԧ𝑣

𝑑𝑡
= Ԧ𝐹

E.M. Field 

𝐸, 𝐵

𝜙, Ԧ𝐴

𝐴𝜇

E.M. field sources
𝜌𝑐 , Ԧ𝑗

𝑗𝜇

Kinetic
𝑓𝜎 Ԧ𝑥, Ԧ𝑣, 𝑡

Stat. Mech.

𝑑𝑓𝜎
𝑑𝑡

= 𝐶

Multi-fluid
𝑛𝜎 Ԧ𝑥, 𝑡
𝑢𝜎 Ԧ𝑥, 𝑡
𝒫𝜎 Ԧ𝑥, 𝑡

Fluid eqs. 
of motion

x 2

MHD
𝑛 Ԧ𝑥, 𝑡

𝑈 Ԧ𝑥, 𝑡
𝒫 Ԧ𝑥, 𝑡

Single fluid eq. 
of motion

+
Ohm’s law

𝐸 + 𝑈 × 𝐵 = …

Choose

averaging

c.o.m.

Solve
[integrate]

lots of 
particles

Solve
[integrate]
𝑓 Ԧ𝑥, 𝑡

Dynamics
Evolution, waves, 

etc.
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𝑗𝜇

Kinetic
𝑓𝜎 Ԧ𝑥, Ԧ𝑣, 𝑡

Stat. Mech.

𝑑𝑓𝜎
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= 𝐶

Multi-fluid
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Fluid eqs. 
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x 2

MHD
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lots of 
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Solve
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Dynamics
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Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇

Particle {𝒒;𝒎}
Ԧ𝑥 𝑡
Ԧ𝑣 𝑡

Electrodynamics
𝑑 𝛾𝑚 Ԧ𝑣

𝑑𝑡
= Ԧ𝐹

E.M. Field 

𝐸, 𝐵

𝜙, Ԧ𝐴

𝐴𝜇

E.M. field sources
𝜌𝑐 , Ԧ𝑗

𝑗𝜇

Kinetic
𝑓𝜎 Ԧ𝑥, Ԧ𝑣, 𝑡

Stat. Mech.

𝑑𝑓𝜎
𝑑𝑡

= 𝐶

Multi-fluid
𝑛𝜎 Ԧ𝑥, 𝑡
𝑢𝜎 Ԧ𝑥, 𝑡
𝒫𝜎 Ԧ𝑥, 𝑡

Fluid eqs. 
of motion

x 2

MHD
𝑛 Ԧ𝑥, 𝑡

𝑈 Ԧ𝑥, 𝑡
𝒫 Ԧ𝑥, 𝑡

Single fluid eq. 
of motion

+
Ohm’s law

𝐸 + 𝑈 × 𝐵 = …

Choose

averaging

c.o.m.

Solve
[integrate]

lots of 
particles

Solve
[integrate]
𝑓 Ԧ𝑥, 𝑡

Energy p.o.v
𝛿𝑊

System state
stability, etc.

න𝑈 ⋅ … 𝑑𝑉

Helicity p.o.v
𝐾𝑚𝑎𝑔

𝑑𝐾𝑚𝑎𝑔

𝑑𝑡

System 
configuration

𝐵 Ԧ𝑥
(quasi static 
evolution)

න…𝑑𝑉

Dynamics
Evolution, waves, 

etc.



Maxwell’s Eqs.

⊡𝐴𝜇 = −𝜇0 𝑗𝜇

Particle {𝒒;𝒎}
Ԧ𝑥 𝑡
Ԧ𝑣 𝑡

Electrodynamics
𝑑 𝛾𝑚 Ԧ𝑣

𝑑𝑡
= Ԧ𝐹

E.M. Field 

𝐸, 𝐵

𝜙, Ԧ𝐴

𝐴𝜇

E.M. field sources
𝜌𝑐 , Ԧ𝑗

𝑗𝜇

Kinetic
𝑓𝜎 Ԧ𝑥, Ԧ𝑣, 𝑡

Stat. Mech.

𝑑𝑓𝜎
𝑑𝑡

= 𝐶

Multi-fluid
𝑛𝜎 Ԧ𝑥, 𝑡
𝑢𝜎 Ԧ𝑥, 𝑡
𝒫𝜎 Ԧ𝑥, 𝑡

Fluid eqs. 
of motion

x 2

MHD
𝑛 Ԧ𝑥, 𝑡

𝑈 Ԧ𝑥, 𝑡
𝒫 Ԧ𝑥, 𝑡

Single fluid eq. 
of motion

+
Ohm’s law

𝐸 + 𝑈 × 𝐵 = …

Choose

averaging

c.o.m.

Solve
[integrate]

lots of 
particles

Solve
[integrate]
𝑓 Ԧ𝑥, 𝑡

Energy p.o.v
𝛿𝑊

System state
stability, etc.

න𝑈 ⋅ … 𝑑𝑉

Canonical Helicity p.o.v
𝐾𝜎 = 𝐾𝑘𝑖𝑛 + 𝐾𝑐𝑟𝑜𝑠𝑠 + 𝐾𝑚𝑎𝑔

𝑑𝐾𝜎
𝑑𝑡

= ⋯

System 
configuration

𝐵 Ԧ𝑥 , 𝑢 Ԧ𝑥
(quasi static 
evolution)

න…𝑑𝑉

Dynamics
Evolution, waves, 

etc.


