)S(Accelerated Taylor State Plumes in SSX

Manjit Kaur

Swarthmore College, Swarthmore, PA 19081

J. E. Shrock'18, J. Han'17, D. A. Schaffner & M. R. Brown

Research supported by DOE OFES & ARPA-e ALPHA

US-Japan Workshop on Compact Tori 2016, Hotel Irvine, Irvine, CA 92614, USA

Our goal

- Twisted Taylor state \rightarrow A magnetic plasma object exhibiting minimum energy state
- First observed in SSX lab (Gray *et al.*, PRL, 2013)
- **Our goal** is to <u>accelerate</u> a Taylor state to high velocity, then stagnate and <u>compress</u> the object into a suitable MIF target

Overview of talk

- System description
- o Un-accelerated SSX plasma
 - \circ Injected into glass tube with different liners
 - \circ Baseline velocity, density and temperature
- o Accelerated SSX plasma
 - \circ Velocity predictions
 - \circ Experimental progress
- o Summary

System schematic

Un-accelerated Plasma

Current set-up

Velocity Measurements

B probes installed on glass

- Single turn wire loops
- Separated by 10 cm each

Time of Flight measurements

Time travelled by the structure at different locations

Plume velocity with glass

Resistive flux conserver

- SS309 foil, thickness ~ $50 \ \mu m$
- Magnetic soak time $\sim 3 \ \mu s$

Plume velocity with resistive liner

Mesh flux conserver

- Bronze mesh, thickness ~ $450 \ \mu m$, transparency ~ 42%
- Magnetic soak time $\sim 245 \, \mu s$

Plume velocity with mesh conserver

Density & Temperature measurements

Characterization in expansion chamber

Interferometer chord, different chords of IDS and two magnetic probes also shown in the expansion chamber

Density of Taylor plume

16-channel trans-impedance amplifier circuit

Ion temperature Profile

Line shape from glass

Plasma production

Ion temperature of expansion side plasma

Line shape of expansion side plasma

Un-accelerated Taylor state

Overview of talk

- System description
- o Un-accelerated SSX plasma
 - $\circ\,$ Injected into glass tube with different liners
 - Baseline velocity, density and temperature v = 30 km/s, $n \approx 10^{15} \text{ cm}^{-3}$, $T_i = 30 \text{ eV}$
- \circ Accelerated SSX plasma
 - Velocity predictions
 - Experimental progress
- o Summary

Accelerated Plasma

Acceleration with single theta pinch coil

Acceleration system capabilities

 $C \cong 1.3 \ \mu F \ (@100 \ kV)$

Power supply output voltage	40 <i>kV</i>
Energy stored, <i>E_C</i>	1 <i>kJ</i>
Acceleration to velocity, v_{acc}	290 km/s
@25% efficiency, v_{acc}	145 km/s

Pulsed theta pinch coil

Multiple parallel coaxial cable connections to reduce inductance, $L \approx 1 \, \mu H$

 $\tau_{1/4} \propto \sqrt{LC} \cong 1 \, \mu sec$

Progress

- Theta pinch coil & stagnation flux conserver are ready to be installed.
- Assembling the different parts of the Capacitor charging and discharging circuit i.e., Bochkov switches, Ross relay, diodes, resistors, and capacitors and timing modules etc. (Ian Allfrey & Travis Valentine (TAE) are helping us with their useful suggestions)

Ultimate goal

Four theta pinch coils will be triggered **separately** & **sequentially** to accelerate plasma to <u>velocities over 200 km/s</u> and to achieve **compressional density over 10^{16} \text{ cm}^{-3}**

Summary

- Taylor state characterized in new glass extension with a variety of liners, ready for stagnation experiments
- Theta pinch coil and accelerator test stand $(1 \ \mu F @ 20 \ kV)$ nearly ready using TAE components

Thank you