

Compact Toroid Injection into C-2U FRC

US-Japan CT2016, August 24

Tadafumi Matsumoto Nihon University

Collaborations

- Integral partnership
- Development of a compact toroid injector for particle refueling

Acknowledgements

- H. Gota
- T. Roche
- T. Asai*
- E. Garate
- *Nihon University
- E. Granstedt

I. Allfrey

- T. Valentine
- J. Kinley, C. Hooper
- M. Cordero
- P. Feng
- W. Waggoner
- M. Conroy
- M. Morehouse
- D. Sheftman
- T. Tajima* *UCI

- Motivation
- CT Injector Overview
- CT injection into C-2U FRC
- Upgrade
- Summary

Motivation

- CT Injector Overview
- CT injection into C-2U FRC
- Upgrade
- Summary

Motivation

Requirement for CT Injection

- In C-2U particle loss rate was 2.0 4.0× 10¹⁸ / ms
- To penetrate the FRC, the kinetic energy density of the CT must be higher than 4 kJ/m³, which is magnetic field energy inside the confinement vessel, e.g., density of CT 1×10¹⁵ cm⁻³, velocity 70 km/s
- The CT Injector is a viable refueling candidate

- Motivation
- CT Injector Overview
 - Developed CT injector
 - Test Stand
 - CT Parameters
- CT injection into C-2U FRC
- Upgrade
- Summary

Magnetized Coaxial Plasma Gun

Tungsten coating

The surface of the inner electrode is coated with tungsten by Vacuum Plasma Spraying

Extension electrode

The roles of the extension electrode are; protect ceramic break from the plasma, and suppress diffusion of the magnetic field.

Biasing magnetic field applied and working gas is injected between electrode.

(2)

Formation bank is triggered to begin breakdown. The plasma is accelerated by Lorentz force.

(3)

The accelerated plasma is captured by bias field. Then the reconnection occurs.

(4)The magnetized plasma is ejected.

Test Bed with Transverse magnetic field coil

Drift tube

• The drift tube diagnostics measure typical CT parameters; velocity, density, and temperature.

Glass chamber

• The transverse magnetic field coil simulates C-2U's magnetic field.

CT was compressed by magnetic field

Field-free region →CT Expands

w/ Transverse field

Summary of CT Optimization

CT Performance

Required parameters	>70 km/s, 1.0×10 ¹⁵ cm ⁻³
Gun current up to	190 kA
Total energy of CT up to	0.7 kJ
Velocity	>100 km/s
Density	1.5 - 3.5×10 ¹⁵ cm ⁻³
Electron temperature	20 - 40 eV
Energy Density	50 kJ/m ³

CT Injection across transverse field

- Developed CT injector achieved the requirement
- CT will penetrate C-2U Field
- Diameter of CT in the transverse field is 5-10 cm according to probe measurements

- Motivation
- CT Injector Overview

CT injection into C-2U FRC

- Installation of CTI
- Single CT injection 1 CT
- Multi-Pulse CT injection _____ Up to 3 CTs
- Upgrade
- Summary

CT injectors installed on C-2U

- The CT injectors were installed on the confinement vessel.
- Angles
 - NW CTI

From mid-plane 26.1 deg From Vertical 42 deg

• SE CTI

From mid-plane 29 deg From Vertical 39.3 deg

 These injectors can be controlled independently.

Single CT pulse increased density/particles

- Interferometry verifies mid-plane density increase
- Pressure balance confirms particle number increases
- Shine-through reduced when CT injected

Particle number increased by CT injection

- CTs Injected at various times
- Initial rise particle inventory as high as 40%
- Original loss rate resumes with higher offset
- Total particles added seems to depend on injection time
- Probably due to larger target
- For these conditions ~ 2ms was optimal time for injection

- Motivation
- CT Injector Overview

CT injection into C-2U FRC

- Installation of CTI
- Single CT injection _____ 1 CT
- Multi-Pulse CT injection _____ Up to 3 CTs
 - Development of Multi-pulse injection system
- Upgrade
- Conclusion

Multi-pulse system and Fast Camera

Multi-Pulse:

- Main Bank of 125 µF with 10 kV
- Multi-pulse at ≤ 1 kHz
- Diodes as crowbar and blocking element

Fast-framing Camera (NAC Image Technology):

- Up to **1.25 MILLION** frames/sec for 120 frames
- 100 ns minimum exposure time
- 360×410 pixel color sensor
- 10-bit, 58 µm pixels
- Nikon lens mount

High speed imaging of 2 CTs at the Test-Stand

Multi-Pulsed CT Injections at the Test-Stand: CTIs at t=0 and 3.5 ms

1st Awesome Video on the C-2U

CTs add a lot of particles

- First 2 CTs increase particle inventory
- The increased density was 10-20%
- 3rd CT alters/kills FRC
- Particle loss rate reduced by first CT
- FRC begins to decline after 2nd CT

Da emission was increased after CT injection

- Motivation
- CT Injector Overview
- CT injection into C-2U FRC
- Upgrade
 - Development of a Pre-ionization source
- Summary

Pre-Ionization system has been developed

PI reduces trailing neutral gas

No Pl

- Neutral gas follows CT
- Interacts with plasma

TRI ALPHA ENERGY

- PI eliminates gas trail
- Edge undisturbed

Neutral gas load removed with PI

- D_{α} emission at C plane minimized
- No burst of light when 2nd CT is injected
 Bulk of trailing neutral gas avoided

TRI ALPHA ENERGY

Summary

- The CTI program has advanced quickly
- Incremental addition of pulses
 - Refueling from each pulse
 - $D\alpha$ emission after pulse
- Several developmental cycles have led to
 - Multi-pulsed system
 - Reduction of neutral gas by Pre-ionization system
- Full refueling capabilities for C-2W currently in development

