MHD and Hybrid Simulation Study of FRC Plasmas

<u>T. Takahashi¹</u>, S. Koike¹, M. Yanagi¹, K. Matsuzaki¹, T. Urano¹, S. Kanno¹, D. Adachi¹, T. Matsui¹, N. Mizuguchi², and T. Asai³

Graduate School of Science and Technology, Gunma University, Kiryu, Japan
 National Institute for Fusion Science, Toki, Japan
 College of Science and Technology, Nihon University, Tokyo, Japan

Outline

- 1. Research Background
- 2. MHD simulation
 - i. FRC translation and two FRC collision process
 - ii. Comparison with ST merging
- 3. Hybrid simulation
 - i. Feasibility of slow formation by plasma pressure supply
- 4. Summary

(my personal) Research Background

Plasma Ion Dynamics

1995-1998

Collisionless pitch-angle scattering at X-point

1998-2006

Adiabaticity breaking of plasma ions in core region

NB injected particle motion

2004-

Origin of spontaneous toroidal spin-up

2004-2006 Fusion propulsion 2013-Translation and two FRCs collision

2016/8/25

C-2 experiment calculated by LamyRidge code

H. Y. Guo et al, Phys. Plasmas 18, 056110 (2011).

Electron fluid equation + Ion particle model

Basic equations

Resistive Hall MHD equations

Eq. continuity
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{u})$$
Eq. Motion $\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} + \frac{1}{\rho} \left[\frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} - \nabla p - \nabla \cdot \mathbf{II} \right]$ Energy Eq. $\frac{\partial p}{\partial t} = -(\mathbf{u} \cdot \nabla)p - \gamma p \nabla \cdot \mathbf{u} + (\gamma - 1) \left[\eta j^2 - \mathbf{II} : \nabla \mathbf{u} \right]$ Faraday's law $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left(\eta \mathbf{j} - (\mathbf{u} \times \mathbf{B}) + \frac{1}{en_o} [(\mathbf{j} \times \mathbf{B}) - \nabla p_o] \right) \qquad p_o = 0.5p$ Hall term• Cylindrical coordinate system• G-S equilibrium as initial condition• Axisymmetric system• Resistivity dependent on the current density• 4-th order Runge-Kutta method

群馬大学

Translation by magnetic pressure gradient

Collision simulation (1)

w/o magnetic assist: sequential external field control

Two FRCs collision, 0-72[µs].

Collision simulation (2)

w/ magnetic assist: sequential external field control

Collision simulation with magnetic assist, $0-72[\mu s]$.

Magnetic reconnection occurs in the separatrix field line.

Larger translation velocity is observed

About two times larger

Our result is different from the experiment

Comparison of field structure

- Only slight difference between two models is observed
 - No complete core merging can be reproduced

8/22

High resolution resistive MHD simulation

High resolution simulation results

Current density profile in the reconnection region

2D current density profile. (Top) Conventional model (bottom) high-resolution model

- Width of the current sheet Up to 5 meshes in conventional model Up to 12 meshes in high-resolution model

Force in reconnection region

 $\mathbf{j} \times \mathbf{B} - \nabla p$: Dominant force components in our MHD model

- Attracting force acts on two FRC plasmas
- Repelling force, however, is found near the separatrix surface

ST plasma merging

Required subject of fusion research = Core Fueling

Merging fueling method^[1]

[1] O. Mitarai et al., Fusion Eng. Des. **109-111** Part B, 1365 (2016).

Feasibility study

3D MHD simulation code -MIPS^[2]-

[2] Y. Todo *et al.*, PFR **5**, S2062 (2010).

Assist coils (to accelerate the secondary plasma)

Translation and merging process

- 1. Collision occurs at 260 t_A , and then the reconnection process starts.
- 2. During 600-630 t_A the magnetic axes of two plasmas approach rapidly, and the secondary plasma is absorbed into the main plasma.

Core fueling and current drive

2D plot of the plasma pressure on a poloidal cross-section

Can we produce FRC by giving the pressure gradient?

Formation of FRC: Field Reversed Theta Pinch (FRTP) method

Is it possible to generate an FRC by the following scenario?

The pressure gradient

- \rightarrow the diamagnetic current
 - \rightarrow a field-reversed configuration

3D hybrid simulation

Goal

群馬大学

We clarify the possibility to occur field reversal without fieldreversed the pinch method by using 3D hybrid simulation

Difference of sequence

Hybrid simulation model

Equation of motion for $\boldsymbol{\alpha}$ species

$$m_{\alpha} \frac{\mathrm{d}\mathbf{v}_{\alpha}}{\mathrm{d}t} = q_{\alpha} \left(\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B} \right) - \sum_{\beta} m_{\alpha} v_{\alpha\beta} (\mathbf{v}_{\alpha}) \left(\mathbf{v}_{\alpha} - \mathbf{u}_{\beta} \right)$$

Collisional pitch angle scattering can be also considered by the Monte-Carlo method

Equation of motion for massless electron fluid

$$-en_{e}(\mathbf{E} + \mathbf{u}_{e} \times \mathbf{B}) - \nabla p_{e} + \mathbf{R}_{ei} = \mathbf{0}$$

$$\mathbf{R}_{ei} = -\mathbf{R}_{ie} = \int m_{i} v_{ie} (\mathbf{v}_{i} - \mathbf{u}_{e}) f_{i}(\mathbf{v}_{i}) d\mathbf{v}_{i}$$
Faraday's law
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
Ampere's law
$$\mu_{0} \mathbf{j} = \nabla \times \mathbf{B}$$

Definition of current density $\mathbf{j} = en_e(\mathbf{u}_i - \mathbf{u}_e)$

Thermal energy equation for electron fluid

$$\frac{\partial p_{\rm e}}{\partial t} + \gamma \, p_{\rm e} \big(\nabla \bullet \mathbf{u}_{\rm e} \big) + \mathbf{u}_{\rm e} \bullet \nabla p_{\rm e} = \big(\gamma - 1 \big) \big(\mathbf{u}_{\rm e} - \mathbf{u}_{\rm i} \big) \bullet \mathbf{R}_{\rm ei}$$
2016/8/25

Tested particle fueling model

- Particle loading is done by using pseudo random number
- Normal distribution is used for spatial profile
- Velocity distribution is Maxwellian

Ring fueling results

External field: B_{ex} =0.4 T lon temperature: T_i =50eV lon fueling time 5 µs Calculation time 15 µs

As soon as fueling stops, ring configuration destroys due to axial diffusion.

群馬大学

Circular fueling

群馬大学

External field: B_{ex} =0.4 T lon temperature: T_i =50eV lon fueling time 5 µs Calculation time 10 µs

As soon as fueling stops, ring configuration destroys due to axial diffusion and instability.

Magnetic field weakening

External field: B_{ex} =0.4 T Ion temperature: T_i =50eV Electron temperature: T_e =50eV Ion fueling rate: S=1.4*10²⁶[1/s]

External field: B_{ex} =0.4 T Ion temperature: T_i =50eV Electron temperature: T_e =50eV Ion fueling rate: S=1.4*10²⁷[1/s]

- 1. Magnetic field weakening stops just after the end of fueling.
- 2. As the ion fueling rate increases, magnetic field weakening enhances. However, it can never produce the field-reversal.

2016/8/25

22

Circular fueling results

Dispersion by axial diffusion

Due to no field-reversal and no magnetic reconnection event, the circular plasma configuration destroys by the rapid axial diffusion.

Summary

- 2D Resistive MHD / Hall MHD simulation has been carried out to study two FRC collision process.
- 3D MHD simulation has also been done for ST merging. After a ballooning instability, the merging process is observed.
- From our high-resolution MHD simulation, the following effects are essential to reproduce FRC merging
 - ✓ Cross-field thermal conductivity
 - Anomalous resisitivity effect
 = requirement of full-particle simulation
- We can not succeed in producing an FRC plasma by giving only the pressure gradient.

