SoCal BSM 2019

Hints for BSM from B-physics

MAURO VALLI

University of California, Irvine

09/28/2019

No tree-level flavor changing neutral currents in the Standard Model (SM).

SENSITIVITY TO NEW PHYSICS (NP) !

b ---> s II transitions

Anatomy of $B \longrightarrow K^{(*)}\ell\ell$

$$\begin{split} H^{(V)}_{\lambda}(q^2) &\propto 2 \frac{m_b m_B}{q^2} \left(C_7^{\text{eff}} + \Delta C_{7,\lambda}^{\text{QCDf}}(q^2) \right) \,\tilde{T}_{\lambda}(q^2) + C_9^{\text{eff}}(q^2) \tilde{V}_{\lambda}(q^2) \\ \\ \text{HELICITY AMPLITUDES: } \lambda &= \pm, 0. \\ H^{(P)}(q^2) &\propto 2 \frac{m_\ell m_B}{q^2} C_{10} \, \left(1 + \frac{m_s}{m_b} \right) \tilde{S}(q^2) \,, \\ H^{(A)}_{\lambda}(q^2) &\propto C_{10} \, \tilde{V}_{\lambda}(q^2) \,. \end{split}$$

- SHORT DISTANCE @ DIM 6 SM Wilson coeffs @ ~ m_b : C_7 ~ -1/3, C_9 ~ 4, C_{10} ~ -4

FOCUS ON LFUV --> NP IN SEMILEPTONIC OPERATORS SHIFTS OF SM WILSON COEFFS @ LOW ENERGY

$$O_{9[10],\ell}^{(\prime)} = \bar{s}_{L(R)} \gamma_{\mu} [\gamma_5] b_{L(R)} \bar{\ell} \gamma^{\mu} [\gamma_5] \ell \; \leftrightarrow \; C_{9[10],\ell}^{(\prime)}$$

Anatomy of $B \longrightarrow K^{(*)}\ell\ell$

$$\begin{split} H^{(V)}_{\lambda}(q^2) &\propto 2 \frac{m_b m_B}{q^2} \left(C_7^{\text{eff}} + \Delta C_{7,\lambda}^{\text{QCDf}}(q^2) \right) \tilde{T}_{\lambda}(q^2) + C_9^{\text{eff}}(q^2) \tilde{V}_{\lambda}(q^2) \\ \\ \text{HELICITY AMPLITUDES: } \lambda &= \pm, 0. \\ H^{(P)}(q^2) &\propto 2 \frac{m_\ell m_B}{q^2} C_{10} \left(1 + \frac{m_s}{m_b} \right) \tilde{S}(q^2), \\ H^{(A)}_{\lambda}(q^2) &\propto C_{10} \tilde{V}_{\lambda}(q^2) . \end{split}$$

- SHORT DISTANCE @ DIM 6 SM Wilson coeffs @ ~ m_b : C_7 ~ -1/3, C_9 ~ 4, C_{10} ~ -4
- FORM FACTORS FOR B —> K^(*) state-of-the-art from LQCD & LCSR computations
- QCD CONTRIBUTIONS FROM C x C & PENGUINS
 QCD factorization for leading effects of O(Λ_{QCD}/m_b),
 but non-factorizable power corrections also present.

KNOWN UKNOWNS IN $B \rightarrow K^* \ell \ell$

$$(q^2) = \frac{\epsilon^*_{\mu}(\lambda)}{m_B^2} \int d^4x e^{iqx} \langle \bar{K}^* | T\{j^{\mu}_{\rm em}(x) \mathcal{H}^{\rm had}_{\rm eff}(0)\} | \bar{B} \rangle$$

- i) LCSR estimate based on small q^2
- *ii)* Single soft gluon approximation
- iii) Dispersion relations

Khodjamirian et al. `10

$$\Delta C_{9,i}^{(c\bar{c})}(q^2) = \frac{r_{1,i}\left(1 - \frac{\bar{q}^2}{q^2}\right) + \Delta C_{9,i}^{(c\bar{c})}(\bar{q}^2)\frac{\bar{q}^2}{q^2}}{1 + r_{2,i}\frac{\bar{q}^2 - q^2}{m_{J/\psi}^2}}$$

Similar results more recently found in: *Blake et al.* `17, *Bobeth et al.* `17

"OPTIMISTIC" VIEW = TRUST LCSR COMPLETELY! -> Phenomenological Model Driven (PMD)

KNOWN UKNOWNS IN $B \rightarrow K^* \ell \ell$

Phenomenological Data Driven (PDD)

$$\tilde{h}_{\lambda}(q^2) = \sum_{k} \tilde{h}_{\lambda}^{(k)} \left(\frac{q^2}{\text{GeV}^2}\right)^k \quad \begin{array}{l} \text{up to } \textit{k=2,} \\ \text{16 real coeffs} \\ \text{are involved} \end{array}$$

 $\frac{\Delta C_{9}}{\left(V \text{ semi-lep operator}\right)} \frac{\Delta C_{7}}{\left(e.m. \text{ dipole operator}\right)} \left\{ \left(C_{9}^{\text{eff}} + h_{-}^{1}\right) V_{L-} + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2m_{b}}{m_{B}} \left(C_{7}^{\text{eff}} + h_{-}^{0}\right) T_{L-} - 16\pi^{2}h_{-}^{2}q^{4}\right] \right\} \\ \left\{ \left(C_{9}^{\text{eff}} + h_{-}^{1}\right) \tilde{V}_{L0} + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2m_{b}}{m_{B}} \left(C_{7}^{\text{eff}} + h_{-}^{0}\right) \tilde{T}_{L0} - 16\pi^{2} \left(\tilde{h}_{0}^{0} + \tilde{h}_{0}^{1}q^{2}\right)\right] \right\} \\ \left\{ \left(C_{9}^{\text{eff}} + h_{-}^{1}\right) V_{L+} + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2m_{b}}{m_{B}} \left(C_{7}^{\text{eff}} + h_{-}^{0}\right) T_{L+} - 16\pi^{2} \left(h_{+}^{0} + h_{+}^{1}q^{2} + h_{+}^{2}q^{4}\right)\right] \right\}$

DO NOT HAVE C7,9 SHORT-DISTANCE COUNTERPART!

"CONSERVATIVE" APPROACH = TRUST LCSR RESULTS **ONLY** AT $q^2 \le GeV^{2}$.

REQUIRE ALSO |h+/h-| << 1 AT LARGE RECOIL (Jager & Camalich`14).

BAYESIAN ANALYSIS OF $B \longrightarrow K^{(*)} \ell \ell'$

Taming the charm-loop monster...

Aarco Ciuchini

57 TO **77** PARAMETERS **VARIED** IN $b \rightarrow s \ell \ell$ FITS (PRIORS: GAUSSIAN/FLAT)

- FIT AVAILABLE EXPERIMENTAL INFO. IN PARTICULAR, FOCUS ON:

LHCb CP-CONSERVING ANGULAR OBS + BRs FOR K(*) MODES AT LARGE RECOIL + CMS & ATLAS MEASUREMENTS, BELLE DATA ON P'_4 & P'_5 , UPDATE ON Bs —> $\mu\,\mu$

- BAYESIAN MODEL COMPARISON WITH INFORMATION CRITERION:

 $IC \equiv -2\overline{\ln \mathcal{L}} + 4\sigma_{\ln \mathcal{L}}^2$ (best model <--> lowest /C value)

THIS IS NOT ABOUT LIVER PROBLEMS ...

HEP-FIT SYRUP

Natural hepatoprotective

Helps in proper functioning of the liver

Combats the liver inflammation(chronic or acute)

Empairs enlarged liver

THE HEPfit CODE

 General High Energy Physics fitting tool to combine indirect and direct searches of new physics

- Flexible open-source C++ code
- Stand-alone and library modes to compute observables in the SM & beyond
- Add new models and/or observables as external modules
- Optional Bayesian Statistical Analysis framework (supports MPI parallelization)

http://hepfit.romal.infn.it

https://github.com/silvest/HEPfit

A WEBCOMIC OF ROMANCE, SARCASM, MATH, AND LANGUAGE.

About the Angular Analysis of $B \longrightarrow k^* \mu \mu$

ANOMALIES IN $B \rightarrow K^* \mu \mu$?

Phenomenological Model Driven (PMD)

$$\overline{\ln \mathcal{L}} = -48.7$$

$$\sigma_{\ln \mathcal{L}}^2 = 6.9$$
 IC = 125

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

Descotes-Genon et al. 2013

Phenomenological Data Driven (PDD)

$$\overline{\ln \mathcal{L}} = -38.5$$

$$\sigma_{\ln \mathcal{L}}^2 = 6.1$$
 IC = 101

JHEP 1606 (2016) 116

arXiv:1512.07157

A GLOBAL ANALYSIS FOR NEW PHYSICS IN $b \longrightarrow s \parallel$

EDUCATED GUESSES FOR NP () P_5 in K* angular analysis very sensitive to $C_{9,\mu}$ Altmannshofer & Straub 2015, Descotes-Genon et al. 2015, Jager & Camalich 2016

2) LFUV ratios essentially constrain (μ - e) combination

2) and 3) originally from Hiller & Schmaltz 2014

D'Amico et al. 2016 Mauri et al. 2018 Ciuchini et al. 2018

3) Ratio of LFUV ratios can spot handness of b-to-s current

 $R_{K^*}[1.1, 6]/R_K[1.1, 6] \simeq 0.86 \pm 0.13$

see discussion in *Ciuchini et al. 2019*

4) $B_{(s)} \longrightarrow \|$ good probe of axial leptonic coupling Tension in $B_s \longrightarrow \mu\mu$, see discussion in Aebischer et al. 2019

RESULTS IN THE WEAK EFFECTIVE THEORY

PDD	PMD	mean(rms)	ΔIC
$C_{9,\mu}^{\mathrm{NP}}$		-1.20(27)	14
		-1.21(16)	50
C_1^N	$_{0,e}^{\mathrm{NP}}$	-0.87(24)	15
(CNP	(CNP)	(-1.61(48), -0.56(53))	13
$(C_{9,\mu},$	C _{9,e})	(-1.28(18), -0.27(34))	48
(CNP	C', NP	(-1.61(33), 0.72(34))	17
$(C_{9,\mu},$	C _{9,μ})	(-1.30(15), 0.53(24))	54
(CNP	$C'^{,\rm NP}$	(-1.55(32), -0.44(14))	24
$(\cup_{9,\mu},$	${\rm U}_{10,\mu}$)	(-1.38(16), -0.37(12))	61

$\Delta IC = IC_{\rm SM} - IC_{\rm NP}$

1 to 3	Not worth more than a bare
	mention
3 to 20	Positive
20 to 150	Strong
>150	Very strong

Kass and Raftery `95

719, EPJC 79 (2019) no.8

arXiv: 1903.09632

RESULTS IN THE WEAK EFFECTIVE THEORY

PDD	PMD	mean(rms)	ΔIC
CNP		-1.20(27)	14
	$0, \mu$	-1.21(16)	50
C_1^{N}	$_{0,e}^{\mathrm{NP}}$	-0.87(24)	15
(CNP	(CNP)	(-1.61(48), -0.56(53))	13
$(C_{9,\mu}^{1,1}, 0)$	$C_{9,e}$)	(-1.28(18), -0.27(34))	48
(CNP	C', NP)	(-1.61(33), 0.72(34))	17
$(C_{9,\mu},$	$C_{9,\mu}$)	(-1.30(15), 0.53(24))	54
(CNP	$C'^{,\rm NP}$	(-1.55(32), -0.44(14))	24
$(C_{9,\mu},$	$U_{10,\mu}$)	(-1.38(16), -0.37(12))	61

$\Delta IC = IC_{\rm SM} - IC_{\rm NP}$

1 to 3	Not worth more than a bare
	mention
3 to 20	Positive
20 to 150	Strong
>150	Very strong

Kass and Raftery `95

719, EPJC 79 (2019) no.8

arXiv: 1903.09632

SMEFT —> $SU(2)_{L} \otimes U(I)_{Y}$ correlations

ABOVE THE EW SCALE ONE MAY ENFORCE LINEARLY REALIZED SM GAUGE SYMMETRY

$$\begin{split} & \textbf{E} \ [\ GeV] & \textbf{A} \\ & \textbf{B} \\ & \textbf{M} \\ & \textbf{M} \\ & \textbf{M} \\ & \textbf{M} \\ & \textbf{A} \\ & \textbf{A}$$

6,

$$OLQ(1,3) \longrightarrow C_9 = -C_{10}$$
, $OLd \longrightarrow C'_9 = -C'_{10}$
 $OQe \longrightarrow C_9 = +C_{10}$, $Oed \longrightarrow C'_9 = +C'_{10}$

Scalar operators are well constrained by B $-\!>\!II$. They cannot address $\mathsf{R}_{\mathsf{K}^{\star}}$.

b -> s ANOMALIES: C9 VS C10

 $\Delta IC = 50$

 $\Delta IC = 21$

 $\Delta IC = 12$

arXiv: 1812.10913

 $K - \overline{K}$ mixing

D-D mixing

 $B_d - \overline{B}_d$ mixing

 $B_s - \overline{B}_s$ mixing

 $[\mathrm{TeV}^{-2}]$

 Y_U diag

 $2.3^{\,\bigtriangleup} \, 10^{-3}$

 $(4.9^{\triangle}, 6.6^{\triangle})$

 $(\varnothing, 8.9 \nabla)$

 $C_{ij}^{HQ^{(1,3)}}$

 Y_D diag

Ø

 $(\emptyset, 8.5^{\diamond})$

 (\emptyset, \emptyset)

ij

11

3331

3332

Model-independent Bounds on the Standard Model Effective Theory from Flavour Physics

Luca Silvestrini^{1, 2, *} and Mauro Valli^{3, †}

¹INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Roma, Italy ²Theoretical Physics Department, CERN, Geneva, Switzerland ³Department of Physics and Astronomy, University of California, Irvine, CA 92697 USA

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$C^{ud^{(1)}}_{ijkl}$	$[\text{TeV}^{-2}]$	$C^{ud^{(8)}}_{ijkl}$	$[\text{TeV}^{-2}]$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ijkl	Y_D diag	Y_U diag	Y_D diag	Y_U diag
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1112	$(\varnothing, 1.1^{\Box})$	$(\varnothing, \varnothing)$	(Ø, Ø)	$(\varnothing, 1.9^{\Box}) \ 10^{-1}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1212	$(\varnothing, 2.5^{\Box}) 10^{-1}$	$(\varnothing, 2.5^{\Box}) 10^{-1}$	$(99^{\Box}, 0.45^{\Box}) 10^{-1}$	$(99^{\Box}, 0.45^{\Box}) 10^{-1}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1213	$(\varnothing, \varnothing)$	$(\varnothing, \varnothing)$	$(\varnothing, 7.0^{\Box})$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1221	$(360^{\Box}, 0.95^{\Box}) 10^{-2}$	$(\varnothing, 4.6^{\Box})$	$(38^{\Box}, 0.17^{\Box}) \ 10^{-2}$	$(\varnothing, 8.3^{\Box}) \ 10^{-1}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1222	$(\varnothing, 11^{\Box})$	$(\varnothing, 11^{\Box})$	$(\varnothing, 3.6^{\Box})$	$(\varnothing, 3.6^{\Box})$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1223	$(\varnothing, 4.7^{\Box})$	$(\varnothing, \varnothing)$	$(\varnothing, 1.6^{\Box})$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1231	$(2.8^{\triangle}, 2.7^{\triangle})$	$(\varnothing, \varnothing)$	$(2.1^{\triangle},1.7^{\triangle})$	$(12^{\diamond}, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1232	$(7.1^{\bigtriangledown}, 5.8^{\bigtriangledown})$	$(7.9^{\diamond}, \varnothing)$	$(2.7^{\diamond}, 5.1^{\bigtriangledown})$	$(2.7^{\diamond}, 6.0^{\diamond})$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1233	$(3.5^{\diamond}, 7.8^{\diamond})$	$(\varnothing, \varnothing)$	$(1.2^{\diamond}, 2.6^{\diamond})$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1312	$(\varnothing, 5.7^{\Box})$	$(6.6^{\Box}, 0.21^{\Box}) 10^{-1}$	$(\varnothing, 1.0^{\Box})$	$(12^{\Box}, 0.37^{\Box}) 10^{-2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1313	$(2.2^{\triangle}, 2.1^{\triangle})$	$(2.2^{\bigtriangleup}, 2.1^{\bigtriangleup})$	$(1.7^{\triangle}, 1.3^{\triangle})$	$(1.7^{\triangle}, 1.3^{\triangle})$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1321	$(1.4^{\Box}, 1.1^{\Box}) \ 10^{-3}$	$(6.6^{\Box}, 5.4^{\Box}) 10^{-1}$	$(2.5^{\Box}, 2.0^{\Box}) 10^{-4}$	$(1.2^{\Box}, 0.97^{\Box}) 10^{-1}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1331	$(1.9^{\triangle}, 1.8^{\triangle}) \ 10^{-1}$	$(\varnothing, \varnothing)$	$(1.5^{\triangle}, 1.2^{\triangle}) 10^{-1}$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1332	$(5.7^{\bigtriangledown}, 4.9^{\bigtriangledown})10^{-1}$	$(\varnothing, \varnothing)$	$(5.1^{\bigtriangledown}, 4.4^{\bigtriangledown}) 10^{-1}$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2212	$(83^{\Box}, 0.22^{\Box}) 10^{-2}$	$(83^{\Box}, 0.22^{\Box}) 10^{-2}$	$(89^{\Box}, 0.4^{\Box}) 10^{-3}$	$(89^{\Box}, 0.4^{\Box}) 10^{-3}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2213	$(4.6^{\triangle}, 4.5^{\triangle}) 10^{-1}$	$(\varnothing, \varnothing)$	$(3.7^{\triangle}, 2.8^{\triangle}) 10^{-1}$	$(\emptyset, 11)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2223	$(28^{\bigtriangledown}, 9.7^{\bigtriangledown}) 10^{-1}$	$(\varnothing, \varnothing)$	$(25^{\bigtriangledown}, 8.6^{\bigtriangledown})10^{-1}$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2312	$(\varnothing, 5.1^{\Box}) 10^{-2}$	$(6.1^{\Box}, 0.19^{\Box}) 10^{-3}$	$(200^{\Box}, 0.92^{\Box}) 10^{-2}$	$(11^{\Box}, 0.33^{\Box}) 10^{-4}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2313	$(1.9^{\triangle}, 1.9^{\triangle}) 10^{-2}$	$(1.9^{\triangle}, 1.9^{\triangle}) 10^{-2}$	$(1.5^{\triangle}, 1.2^{\triangle}) 10^{-2}$	$(1.5^{\triangle}, 1.2^{\triangle}) 10^{-2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2321	$(3.2^{\Box}, 2.6^{\Box}) 10^{-4}$	$(3.2^{\Box}, 2.6^{\Box}) 10^{-4}$	$(5.7^{\Box}, 4.6^{\Box}) 10^{-5}$	$(5.7^{\Box}, 4.6^{\Box}) 10^{-5}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2323	$(12^{\bigtriangledown}, 0.40 ^{\bigtriangledown}) 10^{-1}$	$(12^{\bigtriangledown},0.40^{\bigtriangledown})10^{-1}$	$(1.0 \ \nabla, 0.36 \ \nabla) \ 10^{-1}$	$(1.0 \ ^{\bigtriangledown}, \ 0.36 \ ^{\bigtriangledown}) \ 10^{-1}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2331	$(5.5^{\triangle}, 5.3^{\triangle}) 10^{-2}$	$(8.1^{\Box}, 7.0^{\Box})$	$(3.8 \ ^{\bigtriangledown}, \ 3.3 \ ^{\bigtriangledown}) \ 10^{-2}$	$(1.5 \ ^{\Box}, 1.3 \ ^{\Box})$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2332	$(2.4^{\bigtriangledown},0.81^{\bigtriangledown})10^{-1}$	$(\varnothing, \varnothing)$	$(2.1^{\bigtriangledown},0.72^{\bigtriangledown})10^{-1}$	$(\varnothing, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3311	$(\varnothing, \varnothing)$	$(\varnothing, \varnothing)$	$(\varnothing, \varnothing)$	$(3.3^{\square}, \varnothing)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3312	$(7.3^{\Box}, 5.9^{\Box}) 10^{-3}$	$(2.6^{\Box}, 2.2^{\Box}) 10^{-5}$	$(1.3^{\Box}, 1.3^{\Box}) 10^{-3}$	$(4.6^{\Box}, 4.0^{\Box}) 10^{-6}$
3322 $(\varnothing, \varnothing)$ $(\varnothing, \varnothing)$ $(\varnothing, \varnothing)$ (\emptyset, \emptyset) $(3.3^{\Box}, \varnothing)$ 3323 $(9.9^{\bigtriangledown}, 3.4^{\bigtriangledown}) 10^{-3}$ $(9.9^{\bigtriangledown}, 3.4^{\bigtriangledown}) 10^{-3}$ (\emptyset, \emptyset) $(8.7^{\bigtriangledown}, 3.0^{\bigtriangledown}) 10^{-3}$ $(8.7^{\bigtriangledown}, 3.0^{\lor}) 10^{-3}$	3313	$(2.3^{\triangle}, 2.2^{\triangle}) 10^{-3}$	$(2.3^{\triangle}, 2.2^{\triangle}) 10^{-3}$	$(1.7^{\triangle}, 1.4^{\triangle}) 10^{-3}$	$(1.7^{\bigtriangleup}, 1.4^{\bigtriangleup}) 10^{-3}$
3323 $(9.9^{\bigtriangledown}, 3.4^{\bigtriangledown}) 10^{-3} (9.9^{\bigtriangledown}, 3.4^{\bigtriangledown}) 10^{-3} (8.7^{\bigtriangledown}, 3.0^{\bigtriangledown}) 10^{-3} (8.7^{\bigtriangledown}, 3.0^{\lor}) 10^{-3}$	3322	$(\varnothing, \varnothing)$	$(\varnothing, \varnothing)$	$(\varnothing, \varnothing)$	$(3.3^{\square}, \varnothing)$
	3323	$(9.9^{\bigtriangledown}, 3.4 ^{\bigtriangledown}) 10^{-3}$	$(9.9^{\bigtriangledown}, 3.4 ^{\bigtriangledown}) 10^{-3}$	$(8.7^{\bigtriangledown}, 3.0^{\bigtriangledown}) 10^{-3}$	$(8.7^{\bigtriangledown}, 3.0^{\bigtriangledown})10^{-3}$

 $\Delta F = 2$ CONSTRAINTS ON

 $\Delta F = O$, FROM SMEFT RGE !

ij	jkl	Y_D diag	Y_U diag	Y_D diag	Y_U diag
11	11	(Ø, Ø)	(Ø, 4.8 [□])	(Ø, Ø)	(Ø, Ø)
11	12	$(92^{\Box}, 0.41^{\Box}) 10^{-1}$	$(5.4^{\Box}, 0.31^{\Box})$	$(\emptyset, 0.49^{\Box}) 10^{-1}$	$(\emptyset, 1.6^{\Box})$
11	13	$(2.3^{\circ}, 5.2^{\circ})$	(Ø, Ø)	(Ø, Ø)	(Ø, Ø)
11	21	$(\emptyset, 3.2^{\circ})$	$(\emptyset, 1.1^{\circ})$	(Ø, Ø)	(Ø, Ø)
11	22	(Ø, 7.1°)	(Ø, 1.6 [□])	(∅, 8.6°)	(Ø, Ø)
11	23	$(5.3^{\circ}, 12^{\circ}) 10^{-1}$	(Ø, Ø)	(6.4 °, ∅)	(Ø, Ø)
11	33	$(12^{\circ}, \emptyset)$	(\emptyset, \emptyset)	(Ø, Ø)	(\emptyset, \emptyset)
12	12	$(210^{\Box}, 0.96^{\Box}) 10^{-2}$	$(22^{\Box}, 0.1^{\Box}) 10^{-1}$	$(0, 1.1^{-1})$ 10^{-1}	$(\varnothing, 0.1, 2^{\Box}) 10^{-1}$
12	13	$(8.9^{\triangle}, 3.5^{\diamond})$	(22 , 0.1) 10 (Ø. Ø)	(Ø, Ø)	(Ø, 1.2 / 10 (Ø, Ø)
12	21	(Ø, 10 [◊])	$(220^{\Box}, 0.98^{\Box}) 10^{-2}$	(Ø,Ø)	$(\varnothing, 1.2^{\Box}) 10^{-2}$
12	22	$(1.8^{\circ}, 1.9^{\circ}) 10^{-1}$	$(7.8^{\Box}, 0.4^{\Box}) 10^{-2}$	(Ø, 9.8 [◊]) 10 ⁻¹	(5.8 , 0.54) 10 ⁻²
12	23	$(22^{\circ}, 0.69^{\circ}) 10^{-1}$	(Ø, Ø)	(Ø, 4.3 [◊]) 10 ⁻¹	(Ø, Ø)
12	31	$(1.9^{\circ}, 1.6^{\circ})$	(7.6 [□] , 0.23 [□])	$(12^{\diamond}, 9.5^{\diamond})$	$(\emptyset, 2.8^{\Box})$
12	32	$(2.4^{\circ}, 1.9^{\circ}) 10^{-2}$	$(3.8^{\Box}, 8.4^{\Box}) 10^{-2}$	$(1.4^{\circ}, 1.1^{\circ}) 10^{-1}$	$(6.7^{\Box}, 15^{\Box}) 10^{-3}$
12	33	$(5.2^{\circ}, 1.4^{\circ}) 10^{-3}$	(Ø, Ø)	$(6.2^{\circ}, 5.1^{\circ}) 10^{-2}$	(Ø, Ø)
13	11	(Ø, Ø)	$(6.1^{\Box}, 5.0^{\Box}) 10^{-3}$	(Ø, Ø)	$(7.3^{\Box}, 6.0^{\Box}) 10^{-2}$
13	12	$(\emptyset, 2.2^{\Box}) 10^{-1}$	$(27^{\Box}, 8.5^{\Box}) 10^{-4}$	(Ø, 2.6 □)	$(3.2^{\Box}, 0.1^{\Box}) 10^{-1}$
13	13	$(3.7^{-1}, 2.8^{-1}) 10^{-1}$	$(3.9^{-1}, 2.9^{-1}) 10^{-1}$	$(2.2^{23}, 2.1^{23}) 10^{-1}$	$(2.4^{-1}, 2.3^{-1}) 10^{-1}$
13	21	(Ø, Ø) (Ø, Ø)	$(1.4^{-}, 1.1^{-}) 10^{-2}$ $(12^{-}, 0.27^{-}) 10^{-2}$	(Ø, Ø) (Ø, Ø)	$(1.7^{-}, 1.4^{-}) 10^{-3}$
13	22	(Ø, Ø)	$(12^{-}, 0.37^{-}) 10^{-1}$ $(4.5^{-}, 4.2^{-}) 10^{-1}$	(Ø, Ø)	$(23^{\circ}, 0.14^{\circ})$ 10 $(3.4^{\circ}, 2.6^{\circ})$ 10 ⁻¹
13	31	(Ø, Ø)	$(4.3^{-}, 4.2^{-}) 10^{-2}$ $(3.2^{-}, 2.7^{-}) 10^{-2}$	(0,0)	$(3.4^{-}, 2.6^{-})$ 10 $(3.9^{-}, 3.2^{-})$ 10 ⁻¹
13	32	(Ø, Ø)	$(2.8^{\Box}, 0.16^{\Box}) 10^{-4}$	(Ø, Ø)	$(3.4^{\Box}, 0.12^{\Box}) 10^{-4}$
13	33	(Ø,Ø)	$(0.99^{\triangle}, 1.3^{\triangle}) 10^{-1}$	(Ø,Ø)	$(1.2^{\triangle}, 1.6^{\triangle}) 10^{-1}$
21	11	(Ø, 3.15 [◊])	(Ø, 1.1 [□])	(Ø, Ø)	(Ø, Ø)
21	12	(Ø, 7.1 [◊]) 10 ⁻¹	(Ø, 3.2 [□])	(∅, 8.6 ◊)	(Ø, 9.5 [□])
21	13	$(5.3^{\circ}, 12^{\circ}) 10^{-1}$	(Ø, Ø)	$(6.4^{\circ}, \emptyset)$	(Ø, Ø)
21	21	(Ø, 2.4 [□]) 10 ⁻¹	(Ø, 2.6 [□]) 10 ⁻¹	(Ø, 2.9 [□])	$(\emptyset, 3.1^{\Box})$
21	22	$(5.3^{\circ}, 0.17^{\circ})$	$(5.1^{\circ}, 0.16^{\circ})$	(∅, 2.0 [◊])	(∅, 1.9 [◊])
21	23	$(1.2^{\circ}, 2.7^{\circ}) 10^{-1}$	$(1.2^{\circ}, 2.6^{\circ}) 10^{-1}$	$(1.5^{\circ}, 3.3^{\circ})$	$(1.4^{\circ}, 3.1^{\circ})$
21	31	(Ø, Ø)	(Ø, 6.0 [⊥])	(Ø, Ø)	(∅, 6.0⊔)
21	32	(Ø, Ø)	(Ø, 3.7 [∨])	(Ø, Ø)	(Ø, Ø)
21	33	$(2.8^{\circ}, 6.2^{\circ})$	(\emptyset, \emptyset)	(Ø, Ø) (Ø, Ø)	(\emptyset, \emptyset)
22	12	(1, 1, 3, 7)	$(22^{-}, 0.1^{-}) 10^{-2}$	(81 0 0 0) 10 ⁻¹	(0, 1.2) 10 (28 $-$ 0.13 $-$) 10 ⁻¹
22	13	$(\emptyset, 8.6^{\circ}) 10^{-1}$	$(4.6^{\triangle}, 6.1^{\triangle})$	(9.0 [°] , 0.28 [°])	(Ø. Ø)
22	21	$(48^{\Box}, 0.22^{\Box}) 10^{-2}$	$(51^{\Box}, 0.23^{\Box}) 10^{-2}$	$(58^{\Box}, 0.26^{\Box}) 10^{-1}$	$(61^{\Box}, 0.27^{\Box}) 10^{-1}$
22	22	$(6.7^{\circ}, 6.0^{\circ}) 10^{-1}$	$(4.7^{\Box}, 0.38^{\Box}) 10^{-2}$	$(3.5^{\circ}, 2.1^{\circ})$	$(2.5^{\Box}, 0.16^{\diamond}) 10^{-1}$
22	23	$(9.6^{\diamond}, 0.30^{\diamond})$	(∅, 7.1 ▽)	(Ø, 3.4 [◊])	(Ø, Ø)
22	31	(8.4 [◊] , 2.2 [□])	$(18^{\Box}, 0.53^{\Box}) 10^{-1}$	(Ø, Ø)	(Ø, 0.64 [□])
22	32	$(1.0^{\circ}, 0.83^{\circ}) 10^{-1}$	$(1.6^{\Box}, 1.4^{\Box}) 10^{-1}$	$(6.1^{\circ}, 5.0^{\circ}) 10^{-1}$	$(2.9^{\Box}, 6.3^{\Box}) 10^{-2}$
22	33	$(2.2^{\circ}, 0.61^{\circ}) 10^{-2}$	(Ø, Ø)	$(2.7^{\circ}, 2.2^{\circ}) 10^{-1}$	(Ø, Ø)
23	11	(Ø, Ø)	$(1.4^{\Box}, 1.1^{\Box}) 10^{-3}$	(Ø, Ø)	$(1.7^{\Box}, 1.4^{\Box}) 10^{-2}$
23	12	(Ø, Ø)	$(6.1^{\Box}, 0.2^{\Box}) 10^{-3}$	(Ø, Ø)	$(3.4^{\circ}, 0.1^{\circ}) 10^{-2}$
23	13	(Ø, Ø)	$(8.9^{-}, 6.7^{-}) 10^{-4}$	(Ø, Ø)	$(4.4^{-}, 3.7^{-})$ 10 - (4.4 - , 3.7 -) 10 - 3
23	22	(3.1 , 2.3) 10 (a. a)	$(3.3^{-}, 2.7^{-})$ 10 $(27^{-}, 0.83^{-})$ 10 ⁻³	(3.7 , 3.0) 10 (a. a)	$(3.9^{-}, 3.2^{-}) 10^{-2}$
23	23	$(5.7 \nabla, 2.0 \nabla) 10^{-1}$	$(3.9^{\triangle}, 2.1^{\bigtriangledown}) 10^{-1}$	$(3.1 \nabla, 1.1 \nabla)$	$(2.3^{\triangle}, 1.1^{\bigtriangledown})$
23	31	$(3.1^{\Box}, 2.7^{\Box}) 10^{-1}$	$(7.3^{\Box}, 6.3^{\Box}) 10^{-3}$	$(3.7^{\Box}, 3.2^{\Box})$	(8.8 ⁻¹ , 7.6 ⁻¹) 10 ⁻²
23	32	(Ø, Ø)	$(11^{\Box}, 0.7^{\Box}) 10^{-4}$	(Ø,Ø)	$(14^{\Box}, 0.52^{\Box}) 10^{-4}$
23	33	(Ø, Ø)	$(4.1^{\triangle}, 1.7^{\triangle}) 10^{-1}$	(Ø, Ø)	$(5.2^{\triangle}, 2.1^{\bigtriangledown}) 10^{-1}$
31	12	(Ø, Ø)	$(3.6^{\Box}, 8.2^{\Box})$	(\emptyset, \emptyset)	(Ø, Ø)
31	13	$(12^{\circ}, \emptyset)$	(Ø, Ø)	(Ø, Ø)	(Ø, Ø)
31	21	(Ø, Ø)	(∅, 6.0 □)	(Ø, Ø)	(Ø, Ø)
31	22	(∅, 3.7°)	(Ø, Ø)	(Ø, Ø)	(Ø, Ø)
31	23	(2.8°, 6.2°)	(Ø, Ø)	(Ø, Ø)	(Ø, Ø)
32	12	(0, 0) (2.8 ⁽²⁾ , 2.3 ⁽³⁾) 10 ⁻¹	$(1.7^{-}, 0.23^{-})$ $(1.7^{-}, 3.8^{-}), 10^{-3}$	$(7.8^{\circ}, 6.3^{\circ})$ $(9.4^{\circ}, 7.7^{\circ})$ 10^{-2}	$(0, 2.8^{-})$ $(10^{-}2.3^{-})10^{-2}$
32	13	$(2.3^{\circ}, 2.3^{\circ}) 10^{-2}$ $(2.1^{\circ}, 1.0^{\circ}) 10^{-2}$	(1.7, 5.6) 10 (Ø. Ø)	$(2.5^{\circ}, 0.6^{\circ}) 10^{-2}$	(1.0 , 2.3) 10 (g, g)
32	21	(Ø. 2.2 [□])	$(18^{\Box}, 0.53^{\Box}) 10^{-2}$	(Ø.Ø)	(Ø, 0.64 [□]) 10 ⁻²
32	22	$(1.2^{\circ}, 0.98^{\circ})$	$(7.3^{\Box}, 16^{\Box}) 10^{-3}$	(4.1 [°] , 3.3 [°])	$(0.46^{\Box}, 1.1^{\Box}) 10^{-1}$
32	23	$(8.9^{\circ}, 4.4^{\circ}) 10^{-2}$	(Ø, Ø)	$(1.1^{\circ}, 0.26^{\circ}) 10^{-1}$	(Ø, Ø)
32	31	$(4.6^{\triangle}, 3.5^{\triangle}) 10^{-1}$	$(4.6^{\triangle}, 3.5^{\triangle}) 10^{-1}$	$(2.8^{\triangle}, 2.7^{\triangle}) 10^{-1}$	$(2.8^{\triangle}, 2.7^{\triangle}) 10^{-1}$
32	32	$(2.3^{\circ}, 1.1^{\circ})$	$(1.7^{\Box}, 6.5^{\Box}) 10^{-1}$	(Ø, 5.8 [◊])	$(2.1^{\Box}, 5.8^{\Box})$
32	33	$(2.3^{\circ}, 2.7^{\circ}) 10^{-1}$	(Ø, Ø)	$(1.4^{\circ}, 1.4^{\circ})$	(Ø, Ø)
33	11	(Ø, Ø)	$(3.2^{\Box}, 2.7^{\Box}) 10^{-2}$	(Ø, Ø)	$(3.8^{\Box}, 3.3^{\Box}) 10^{-1}$
33	12	(Ø, Ø)	(7.0 [□] , 0.26 [□]) 10 ⁻⁵	(Ø, Ø)	(8.4 ^{\[-]} , 21 ^{\[-]}) 10 ⁻⁴
33	13	(Ø, Ø)	$(2.5^{\circ}, 3.3^{\circ}) 10^{-2}$	(Ø, Ø)	$(3.0^{-1}, 3.3^{-1}) 10^{-1}$
33	21	$(3.1^{-}, 2.7^{-}) 10^{-1}$	$(7.3^{-}, 6.3^{-}) 10^{-3}$	(3.7 ⁻⁰ , 3.2 ⁻⁰)	(8.8, 7.6) 10-2
33	22	(Ø, Ø)	$(2.9^{-}, 0.11^{-}) 10^{-4}$	(Ø, Ø)	(3.5-, 8.2-) 10-5
33	31	(0, 0) $(4.9^{\triangle}, 4.0^{\triangle}), 10^{-2}$	$(4.9^{\triangle}, 4.0^{\triangle}), 10^{-2}$	(3.2 ^{(Δ} , 3.1 ^{(Δ}), 10 ⁻¹	(3.2 ⁴ , 3.1 ⁴) 10 ⁻¹
33	32	$(2.6 \bigtriangledown, 0.89 \bigtriangledown) 10^{-1}$	$(4.1^{\Box}, 3.1^{\Box}) 10^{-4}$	$(1.4 \bigtriangledown .0.48 \lor)$	$(2.2^{\Box}, 1.6^{\Box}) 10^{-3}$
33	33	(Ø, Ø)	(2.0 [△] , 0.83 [▽])	(Ø,Ø)	(8.5 [△] , 3.6 [▽])

 $C_{ijkl}^{QuQd^{(1)}}$

 $[TeV^{-2}]$

 $C_{ijkl}^{QuQd^{(8)}}$ [TeV⁻²]

12	,)	$5.1^{\Box}, 4.4^{\Box}) 10^{-4}$	$(5.7^{\sqcup}, 4.4^{\sqcup}) 10^{-4}$	
13	(8	$3.6^{\triangle}, 7.2^{\triangle}) 10^{-3}$	$(8.8^{\triangle}, 7.4^{\triangle}) 10^{-3}$	
22		Ø	$2.3^{\Box} \ 10^{-3}$	
23	$(3.0^{\bigtriangledown}, 1.1^{\bigtriangledown}) 10^{-2}$		$(3.1^{\bigtriangledown}, 1.0^{\bigtriangledown}) 10^{-2}$	
33	3 Ø		$6.4^{\bigtriangleup}10^{-1}$	
			,	
		C^{LeQu} [ToV ⁻²]	C^{LedQ} [ToV ⁻²]	
	- 1	C_{ijkl} [lev]	U _{ijkl} [lev]	
ijk	ı	C_{ijkl} [107] Y_D diag	$\begin{bmatrix} U_{ijkl} & [1ev] \\ Y_U & \text{diag} \end{bmatrix}$	
ijkl2221	1 L	C_{ijkl} [10V] Y_D diag $(2.9^{\diamond}, 1.4^{\diamond}) 10^{-1}$	$\begin{array}{c c} U_{ijkl} & [1eV] \\ \hline Y_U \text{ diag} \\ \hline (2.4^{\Box}, 0.14^{\Box}) \ 10^{-1} \end{array}$	
<i>ijki</i> 2221 2222	1 L 2	$\begin{array}{c} C_{ijkl} [1ev] \\ Y_D \text{ diag} \\ \hline (2.9^{\diamond}, 1.4^{\diamond}) \ 10^{-1} \\ (13^{\diamond}, 6.2^{\diamond}) \ 10^{-1} \end{array}$	$\begin{array}{c c} C_{ijkl} & [1eV] \\ \hline Y_U \text{ diag} \\ \hline (2.4^{\Box}, 0.14^{\Box}) \ 10^{-1} \\ (10^{\Box}, 0.59^{\Box}) \ 10^{-1} \end{array}$	
<i>ijk</i> 2221 2222 2223	1 1 2 3	$\begin{array}{c} C_{ijkl} [1ev] \\ Y_D \text{ diag} \\ \hline (2.9^{\diamond}, 1.4^{\diamond}) \ 10^{-1} \\ (13^{\diamond}, 6.2^{\diamond}) \ 10^{-1} \\ (\varnothing, \varnothing) \end{array}$	$\begin{array}{c c} U_{ijkl} & [1eV] \\ \hline Y_U \text{ diag} \\ \hline (2.4^{\Box}, 0.14^{\Box}) \ 10^{-1} \\ (10^{\Box}, 0.59^{\Box}) \ 10^{-1} \\ (2.5^{\Box}, 1.8^{\Box}) \end{array}$	
ijki 2221 2222 2223 3321	l 2 3 L	$\begin{array}{c} C_{ijkl} [1ev] \\ Y_D \text{ diag} \\ \hline (2.9^{\diamond}, 1.4^{\diamond}) \ 10^{-1} \\ (13^{\diamond}, 6.2^{\diamond}) \ 10^{-1} \\ (\varnothing, \varnothing) \\ (1.7^{\diamond}, 0.84^{\diamond}) \ 10^{-2} \end{array}$	$\begin{array}{c c} U_{ijkl} & [1eV] \\ \hline Y_U \text{ diag} \\ \hline (2.4^{\Box}, 0.14^{\Box}) \ 10^{-1} \\ (10^{\Box}, 0.59^{\Box}) \ 10^{-1} \\ (2.5^{\Box}, 1.8^{\Box}) \\ (14^{\Box}, 0.8^{\Box}) \ 10^{-3} \end{array}$	
ijki 2221 2222 2223 3321 3322	1 2 3 1 2	$C_{ijkl} [10^{\circ}] Y_D \text{ diag}$ $(2.9^{\circ}, 1.4^{\circ}) 10^{-1}$ $(13^{\circ}, 6.2^{\circ}) 10^{-1}$ (\emptyset, \emptyset) $(1.7^{\circ}, 0.84^{\circ}) 10^{-2}$ $(7.5^{\circ}, 3.6^{\circ}) 10^{-2}$	$\begin{array}{c c} U_{ijkl} & [1eV] \\ \hline Y_U \text{ diag} \\ \hline (2.4^{\Box}, 0.14^{\Box}) \ 10^{-1} \\ (10^{\Box}, 0.59^{\Box}) \ 10^{-1} \\ (2.5^{\Box}, 1.8^{\Box}) \\ (14^{\Box}, 0.8^{\Box}) \ 10^{-3} \\ (5.9^{\Box}, 0.35^{\Box}) \ 10^{-2} \end{array}$	

b -> **s** Anomalies: SMEFT@ 1-Loop

$$C_{9,\ell} = \mathcal{N}_{\Lambda} \lambda_t \left(\frac{y_t}{4\pi}\right)^2 \log\left(\frac{\Lambda}{\mu_{\rm EW}}\right) \left(C_{\ell\ell}^{HL^{(3)}} - C_{\ell\ell}^{HL^{(1)}} - C_{\ell\ell}^{He} + C_{\ell\ell33}^{Lu} + C_{\ell\ell33}^{eu}\right)$$
$$C_{10,\ell} = \mathcal{N}_{\Lambda} \lambda_t \left(\frac{y_t}{4\pi}\right)^2 \log\left(\frac{\Lambda}{\mu_{\rm EW}}\right) \left(C_{\ell\ell}^{HL^{(1)}} - C_{\ell\ell}^{HL^{(3)}} - C_{\ell\ell}^{He} - C_{\ell\ell33}^{Lu} + C_{\ell\ell33}^{eu}\right)$$
with $\mathcal{N}_{\Lambda} \equiv (\pi v^2)/(\alpha_e \lambda_t \Lambda^2)$

-> INTERESTING SCENARIOS: NP AROUND TEV COUPLING TO TOP QUARKS! (See also Celis et al. 2017, Camargo-Molina et al. 2018, Coy et al. 2019)

- LFUV measurements are golden channels to spot NP
- Hadronic uncertainties do matter in the b to s II global fit
- Forthcoming updates / new data from B-factories / LHCb will have a final word on this pattern of FCNC anomalies

AT PRESENT

EFT analysis points to NP in $C_{9,\mu}$ together with $C^{(2)}_{10,\mu}$

BUT ... "NP IN ELECTRONS" CANNOT BE DISREGARDED IN LIGHT OF HADRONIC UNCERTAINTIES

tree-level: *Z'* or *leptoquark* loop-level: *which SM extension?*

BACK-UP

HINT FOR b->s RIGHT-HANDED CURRENT

About the inferred q² dependence from the "charm-loop" effect.

update of Ciuchini et al.2016

THE OUTCOME DEPENDS ON OUR THEORY INPUT FROM LCSR AT $q^2 < GeV^2$:

Why the Excitement on Anomalies in *B* decays?

Slide for "executives"

The SM of EW intearctions predicts

credit to **B. Grinstein**

Instant Workshop on B Physics Anomalies CERN, 17 May, 2017

 $G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} C_{9(10)} \overline{s}_L \gamma^{\mu} b_L \overline{\ell} \gamma_{\mu} (\gamma_5) \ell$

- This is same for all lepton flavors: lepton universality (LU)
- LU violation (LUV) reported by LHCb in $b
 ightarrow s \mu \mu$ vs b
 ightarrow see
- LUV could arise from new physics (NP):
 - ► At very short distances, with SM below scale $\Lambda \gg M_W$
 - Short distances at SM scale, $\Lambda \sim M_W$ (*e.g.*, strongly coupled EW symmetry breaking)

 \Rightarrow

- Long distances: new light particles
- Worse case scenario: $\Lambda \gg M_W$: $NP = \frac{g^2}{\Lambda^2} \, \bar{s}_L \gamma^\mu b_L \, \bar{\ell} \gamma_\mu (\gamma_5) \ell$
- Fits of reported LUV require

$$\frac{g^2}{\Lambda^2} \approx 0.25 \times G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} C_{9(10)} \quad \Rightarrow \quad \frac{\Lambda}{g} \approx 28 \text{ TeV}$$

Best argument to build VLHC! (or find NP sooner!!)