Jianming Bian

Associate Professor of Physics & Astronomy
4129 Frederick Reines Hall
Research Area: 

Ph.D., Institute of High Energy Physics, Chinese Academy of Sciences, 2009
B.S., Peking University, Physics

My primary research interests are in Intensity Frontier programs. Currently I am working on neutrino experiments NOvA, DUNE, FLArE and Super-Kamiokande. 

NOvA is a long-baseline accelerator-based neutrino oscillation experiment that is optimized for electron neutrino measurements. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its Far Detector in Ash River, Minnesota. The NOvA experiment aims to resolve the neutrino mass hierarchy problem and to constrain the CP-violating phase.

DUNE is the next generation long-baseline experiment in the US which will decisively determine the mass hierarchy and CP violation. DUNE detectors are based on liquid argon time projection chamber (LArTPC) technology, which offers excellent spatial resolution, high neutrino detection efficiency and superb background rejection. DUNE’s prototype detectors protoDUNE-SP and protoDUNE-DP have been taking data at CERN since 2018 .

FLArE is a planed forward liquid argon experiment for high energy neutrino and dark matter searches at Large Hadron Collider at CERN. It will be located in the proposed Forward Physics Facility (FPF), 620 m from the ATLAS interaction point in the far-forward direction, and will collect data during the High-Luminosity LHC era from 2028-37. 

Super-Kamiokande is the large water Cherenkov detector in Japan. Physics topics of the Super-Kamiokande experiment includes solar neutrinos, supernova neutrinos, atmospheric neutrinos, man-made neutrinos and proton decays.

Current research topics in my group

(1)Neutrino oscillation analyses to solve for Mass Ordering and CP violation

(2)Neutrino-electron elastic scattering measurements to constrain neutrino fluxes

(3)Deep learning based neutrino reconstruction technology at DUNE and NOvA

(4)Statistical tools in neutrino data analysis

(5)R&D and fabrication of DUNE's liquid argon purity monitors

(6)Cold electronics for liquid argon time projection chamber detectors

(7)Detector design and simulation for the FLArE experiment

(8)Calibration and data analysis of DUNE's single phase prototype protoDUNE-SP. 


In addition to physics students and postdoc, my group has several students from UCI computer science and statistics departments who are working on deep-learning algorithms and the statistical tools for neutrino reconstruction and analysis. 

Before joining UCI, I was also deeply involved in the very topical search for exotic-hadron states and other studies of charm and charmonium physics in collider experiments. I have been the lead researcher for several important analyses with the BESIII experiment in Beijing, including being the primary author of the discovery of a new four-quark candidate Zc(3900)^0.


Selected Publications

For a complete list of my publications click here

[1] M. A. Acero et al. [NOvA], “Improved measurement of neutrino oscillation parameters by the NOvA ex- periment,” Phys. Rev. D 106, no.3, 032004 (2022) doi:10.1103/PhysRevD.106.032004 [arXiv:2108.08219 [hep-ex]]. https://doi.org/10.1103/PhysRevD.106.032004

[2] A. Cabrera, Y. Han, M. Obolensky, F. Cavalier, J. Coelho, D. Navas-Nicolás, H. Nunokawa, L. Simard, J. Bian and N. Nayak, et al. “Synergies and prospects for early resolution of the neutrino mass ordering,” Sci. Rep. 12, no.1, 5393 (2022) doi:10.1038/s41598-022-09111-1 [arXiv:2008.11280 [hep-ph]]. https://www.nature.com/articles/s41598-022-09111-1

[3] M. A. Acero et al. [NOvA], “Extended search for supernovalike neutrinos in NOvA coincident with LIGO/Virgo detections,” Phys. Rev. D 104, no.6, 063024 (2021) doi:10.1103/PhysRevD.104.063024 [arXiv:2106.06035 [hep-ex]]. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.063024

[4] M. A. Acero et al. [NOvA], “Search for Active-Sterile Antineutrino Mixing Using Neutral- Current Interactions with the NOvA Experiment,” Phys. Rev. Lett. 127, no.20, 201801 (2021) doi:10.1103/PhysRevLett.127.201801 [arXiv:2106.04673 [hep-ex]]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.201801

[5] M. A. Acero et al. [NOvA], “Seasonal variation of multiple-muon cosmic ray air showers observed in the NOvA detector on the surface,” Phys. Rev. D 104, no.1, 012014 (2021) doi:10.1103/PhysRevD.104.012014 [arXiv:2105.03848 [hep-ex]]. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.012014

[6] M. A. Acero et al. [NOvA], “Measurement of the νe−Nucleus Charged-Current Double-Differential Cross Section at 〈Eν〉 = 2.4 GeV using NOvA,” [arXiv:2206.10585 [hep-ex]]. https://arxiv.org/pdf/2206.10585.pdf

[7] M. A. Acero et al. [NOvA], “Measurement of the Double-Differential Muon-neutrino Charged-Current Inclu- sive Cross Section in the NOvA Near Detector,” [arXiv:2109.12220 [hep-ex]]. https://arxiv.org/pdf/2109.12220.pdf 

[8] M. A. Acero et al. [NOvA], “The Profiled Feldman-Cousins technique for confidence interval construction in the presence of nuisance parameters,” [arXiv:2207.14353 [hep-ex]]. https://arxiv.org/pdf/2207.14353.pdf

[9] A. A. Abud et al. [DUNE], “Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC,” JINST 17, no.01, P01005 (2022) doi:10.1088/1748-0221/17/01/P01005 [arXiv:2108.01902 [physics.ins- det]]. https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01005

[10] A. Abud Abed et al. [DUNE], “Low exposure long-baseline neutrino oscillation sensitivity of the DUNE ex- periment,” Phys. Rev. D 105, no.7, 072006 (2022) doi:10.1103/PhysRevD.105.072006 [arXiv:2109.01304 [hep-ex]]. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.072006

[11] A. Abed Abud et al. [DUNE], “Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network,” [arXiv:2203.17053 [physics.ins-det]]. https://arxiv.org/pdf/2203.17053.pdf

[12] A. Abed Abud et al. [DUNE], “Snowmass Neutrino Frontier: DUNE Physics Summary,” [arXiv:2203.06100 [hep-ex]]. https://arxiv.org/pdf/2203.06100.pdf

[13] J. L. Feng, F. Kling, M. H. Reno, et al. “The Forward Physics Facility at the High-Luminosity LHC,” [arXiv:2203.05090 [hep-ex]]. https://arxiv.org/pdf/2203.05090.pdf

[14] P. Ilten, N. Tran, P. Achenbach, A. Ariga, T. Ariga, M. Battaglieri, J. Bian, P. Bisio, A. Celentano and M. Citron, et al. “Experiments and Facilities for Accelerator-Based Dark Sector Searches,” [arXiv:2206.04220 [hep-ex]]. https://arxiv.org/pdf/2206.04220.pdf

[15]  L. Li, N. Nayak, J. Bian and P. Baldi, “Efficient neutrino oscillation parameter inference using Gaussian processes,” Phys. Rev. D 101, no.1, 012001 (2020) https://doi.org/10.1103/PhysRevD.101.012001  [arXiv:1811.07050 [physics.data-an]].

[16]  B. Abi et al. [DUNE], “Long-baseline neutrino oscillation physics potential of the DUNE experiment,” Eur. Phys. J. C 80, no.10, 978 (2020) https://doi.org/10.1140/epjc/s10052-020-08456-z  [arXiv:2006.16043 [hep-ex]].

[17]  B. Abi et al. [DUNE], “First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform,” JINST 15, no.12, P12004 (2020) https://doi.org/10.1088/1748-0221/15/12/P12004  [arXiv:2007.06722 [physics.ins-det]].

[18]  B. Abi et al. [DUNE], “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III: DUNE Far Detector Technical Coordination,” JINST 15, no.08, T08009 (2020) https://doi.org/10.1088/1748-0221/15/08/T08009  [arXiv:2002.03008 [physics.ins-det]].

[19]  B. Abi et al. [DUNE], “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology,” JINST 15, no.08, T08010 (2020) https://doi.org/10.1088/1748-0221/15/08/T08010  [arXiv:2002.03010 [physics.ins-det]].

[20]  B. Abi et al. [DUNE], “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE,” JINST 15, no.08, T08008 (2020) https://doi.org/10.1088/1748-0221/15/08/T08008  [arXiv:2002.02967 [physics.ins-det]].

[21]  M. A. Acero et al. [NOvA], “Adjusting neutrino interaction models and evaluating un- certainties using NOvA near detector data,” Eur. Phys. J. C 80, no.12, 1119 (2020) https://doi.org/10.1140/epjc/s10052-020-08577-5  [arXiv:2006.08727 [hep-ex]].

[22]  M. A. Acero et al. [NOvA], “Measurement of neutrino-induced neutral-current coherent π0 production in the NOvA near detector,” Phys. Rev. D 102, no.1, 012004 (2020) https://doi.org/10.1103/PhysRevD.102.012004  [arXiv:1902.00558 [hep-ex]].

[23] C. E. Taylor et al. [CAPTAIN], “The Mini-CAPTAIN liquid argon time projection chamber,” Nucl. Instrum. Meth. A 1001, 165131 (2021) https://doi.org/10.1016/j.nima.2021.165131  [arXiv:2008.11422 [physics.ins-det]].

[24]  J. Liu et al. [DUNE], “Deep-Learning-Based Kinematic Reconstruction for DUNE,” Confer- ence paper of the Conference on Neural Information Processing Systems (NeurIPS 2021), [ https://arxiv.org/abs/2012.06181  [physics.ins-det]].

[25]  B. Abi et al. [DUNE], “Deep Underground Neutrino Experiment (DUNE), Far Detector Tech- nical Design Report, Volume II: DUNE Physics,” [ https://arxiv.org/abs/2002.03005  [hep-ex]].

[26]  B. Abi et al. [DUNE], “Experiment Simulation Configurations Approximating DUNE TDR,” [ https://arxiv.org/abs/2103.04797   [hep-ex]].

[27]  K. Abe et al. [Hyper-Kamiokande], “The Hyper-Kamiokande Experiment - Snowmass LOI,” [ https://arxiv.org/abs/2009.00794  [physics.ins-det]].

[28]  M. A. Acero et al. [NOvA], “First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA,” Phys. Rev. Lett. 123 (2019) no.15, 151803 https://doi.org/10.1103/PhysRevLett.123.151803   [arXiv:1906.04907 [hep-ex]].

[29] B. Bhandari et al. [CAPTAIN Collaboration], “First Measurement of the Total Neutron Cross Section on Argon Between 100 and 800 MeV,” Phys. Rev. Lett. 123, no. 4, 042502 (2019) https://doi.org/10.1103/PhysRevLett.123.042502 [arXiv:1903.05276 [hep-ex]].

[30] P. Baldi, J. Bian, L. Hertel and L. Li, “Improved Energy Reconstruction in NOvA with Regression Convolutional Neural Networks,” Phys. Rev. D 99, no. 1, 012011 (2019) https://doi.org/10.1103/PhysRevD.99.012011 [arXiv:1811.04557 [physics.ins-det]].

[31] M. A. Acero et al. [NOvA Collaboration], “New constraints on oscillation parameters from nu_e appearance and nu_mu disappearance in the NOvA experiment,” Phys. Rev. D 98 (2018) 032012 https://doi.org/10.1103/PhysRevD.98.032012[arXiv:1806.00096 [hep-ex]].

[32] M. Ablikim et al. [BESIII Collaboration], “Measurement of e^+ e^- -> D\bar{D} cross sections at the ψ(3770) resonance,” Chin. Phys. C 42, no. 8, 083001 (2018) https://doi.org/10.1088/1674-1137/42/8/083001 [arXiv:1803.06293 [hep-ex]].

[33] M. Ablikim et al. [BESIII Collaboration], “Precision Study of psi'->gamma pi^+pi^- Decay Dynamics,” Phys. Rev. Lett. 120, no. 24, 242003 (2018) https://doi.org/10.1103/PhysRevLett.120.242003 [arXiv:1712.01525 [hep-ex]].

[34] P. Adamson et al. [NOvA Collaboration], “Constraints on Oscillation Parameters from nu_e Appearance and Disappearance in NOvA,” Phys. Rev. Lett. 118, no. 23, 231801 (2017)  https://doi.org/10.1103/PhysRevLett.118.231801 [arXiv:1703.03328 [hep-ex]].

[35] P. Adamson et al. [NOvA Collaboration], “Measurement of the neutrino mixing angle theta_23 in NOvA,” Phys. Rev. Lett. 118, no. 15, 151802 (2017) https://doi.org/10.1103/PhysRevLett.118.151802 [arXiv:1701.05891 [hep-ex]].

[36] M. Ablikim et al. [BESIII Collaboration], “Evidence of Two Resonant Structures in e^+ e^- -> pi^+ pi^- h_c,” Phys. Rev. Lett. 118, no. 9, 092002 (2017) https://doi.org/10.1103/PhysRevLett.118.092002 [arXiv:1610.07044 [hep-ex]].

[37] M. A. Acero et al. [NOvA Collaboration], “Measurement of Neutrino-Induced Neutral-Current Coherent pi0 Production in the NOvA Near Detector,” submitted to Phys. Rev. D, https://arxiv.org/1902.00558 [hep-ex].

[38] J. Bian, “Results and Prospects from NOvA,” Proceedings of the 20th International Workshop on Neutrinos from Accelerators (NuFACT2018), https://arxiv.org/1812.09585 [hep-ex].

[39] L. Li, N. Nayak, J. Bian and P. Baldi, “Efficient Neutrino Oscillation Parameter Inference with Gaussian Process,” Conference paper of the 33th AAAI Conference on Artificial Intelligence (AAAI-19), https://doi.org/10.1609/aaai.v33i01.33019967.

[40] B. Abi et al. [DUNE Collaboration], “The DUNE Far Detector Interim Design Report, Volume 2: Single Phase Module,” Fermilab-Design-2018-03, https://arxiv.org/1807.10327[physics.ins-det].

[41] J. Bian, “Measurement of Neutrino-Electron Elastic Scattering at NOvA Near Detector,” Proceedings of DPF2017, https://arxiv.org/1710.03428[hep-ex].

[42] B. Wang, J. Bian, T. E. Coan, S. Kotelnikov, H. Duyang, A. Hatzikoutelis [NOvA Collaboration], “Muon Neutrino on Electron Elastic Scattering in the NOvA Near Detector and its Applications Beyond the Standard Model,” J. Phys. Conf. Ser. 888, no. 1, 012123 (2017). https://doi.org/10.1088/1742-6596/888/1/012123

[43] B. Abi et al. [DUNE Collaboration], “The Single-Phase ProtoDUNE Technical Design Report,” https://arxiv.org/1706.07081[physics.ins-det].

[44] J. Bian, “Recent Results of Electron-Neutrino Appearance Measurement at NOvA,” Proceedings of ICHEP2016, PoS ICHEP 2016, 516 (2017), https://arxiv.org/1611.07480 [hep-ex].

[45] P. Adamson et al. [NOvA Collaboration], “First measurement of muon-neutrino disappearance in NOvA,” Phys. Rev. D 93, no. 5, 051104 (2016) https://doi.org/10.1103/PhysRevD.93.051104  [arXiv:1601.05037 [hep-ex]].

[46] P. Adamson et al. [NOvA Collaboration], “First measurement of electron neutrino appearance in NOvA,” Phys. Rev. Lett. 116, no. 15, 151806 (2016) https://doi.org/10.1103/PhysRevLett.116.151806 [arXiv:1601.05022 [hepex]].

[47] M. Ablikim et al. [BESIII Collaboration], “Observation of Zc(3900)0 in e+e-->pi0pi0J/psi,” Phys. Rev. Lett. 115, no. 11, 112003 (2015) https://doi.org/10.1103/PhysRevLett.115.112003 [arXiv:1506.06018 [hep-ex]].

[48] M. Ablikim et al. [BESIII Collaboration], “Measurements of hc(1P1) in psi' Decays,” Phys. Rev. Lett. 104, 132002 (2010) https://doi.org/10.1103/PhysRevLett.104.132002 [arXiv:1002.0501 [hep-ex]].

Faculty Assistant: 
Aries Magana, ariesm@uci.edu, (949) 346-4431