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1. (16pts) Motion of a charged particle-- The equation of motion for a particle in electric 

field E and magnetic field B is 
𝑑

𝑑𝑡
𝑚𝐯 = 𝑞(𝐄 + 𝐯 × 𝐁), where m is the mass and q is the charge. 

Define scalar potential and vector potential A as AE
t


  , and AB  . Using 

Cartesian position coordinates x as generalized coordinates, derive velocity-dependent potential 

energy, Lagrangian, canonical momenta, and Hamiltonian. Verify that the canonical equations of 

Hamilton recover the equation of motion. Is the Hamiltonian the total energy of the particle? 

 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. (16pts) Inertia tensor for a solid cube— A uniform solid cube of mass M and side a has 

a corner sitting at the origin of the Cartesian coordinates and three sides along the three positive 

coordinates direction (see figure below). (A) Calculate the inertia tensor I⃡. (B) Calculate the 

angular momentum L of an angular velocity  for =(1,0,0) and for =(1,1,1). 

 

Answer: 
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3. (18pts) Relativistic collision— A particle with mass ma and velocity va collides 

elastically with another particle at rest with mass mb. The collision is head-on, i.e., two particles 

move along the line of the incident velocity after the collision. (A) What is the final velocity of 

the target particle vb? (B) What is vb if ma=mb? (C) What is vb if va<<c (speed of light)? 

 

Answer: 

 



Physics Qual - Statistical Mechanics
(

Fall 2018)

I. Use the equipartition theorem of classical statistical mechanics to ob-
tain an expression for the average energy of a diatomic molecule. What is
the specific heat per molecule? Discuss the reason behind the observation
that the specific heat per molecule of H2 below 1000K (and above its lique-
faction temperature) is only 3

2
KT . Give three distinct examples of specific

phenomena for which experimental observations are at variance with the
results of classical statistical mechanics. Discuss the reasons underlying the
failure of the classical approach in each case.

II. Derive the Planck radiation law for the energy density per unit area in
a two dimensional space. Using this result, derive the Stephan-Boltzmann
law for the total energy density per unit area of a two dimensional space.
How does the temperature dependence of the two dimensional Stephan-
Boltzmann law compare with the three dimensional case? It might be
useful to know that

∫

∞

0

dx
x2

ex − 1
= 2ζ(3) = 2.4041 .

III. Near room temperature, as the temperature increases, the electrical
resistance of a conductor increases, whereas the resistance of a semiconduc-
tor decreases. Explain these two phenomena. Why is it appropriate to use
the Fermi distribution in metals at room temperature, and why is the low
temperature approximation for the latter justified in this context.



Quantum Mechanics Qualifying Exam Name/SID:

Quantum Mechanics Ph.D. Qualifying Exam (Spring 2018)

Show all your work. Make sure to explain all your answers, especially if the answer
does not require a calculation.

Some useful integrals∫ ∞
−∞

eiaxe−bx
2/2dx =

√
2π

b
e−

a2

2b ,

∫ ∞
−∞

eiaxxe−bx
2/2dx =

i(2π)1/2a

b3/2
e−

a2

4b



Quantum Mechanics Qualifying Exam Name/SID:

1. (30 points) Consider a system of two spins, 1 and 2. The system can be described by in the
basis | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉, where the first entry denotes state of spin 1 and the second entry
denotes state of spin 2. The interaction between the particles is described by the Hamiltonean

H = E0 +
A

4
σ̂1 · σ̂2 , (1)

where σ̂1 and σ̂2 are vectors of Pauli matrices. Assume that at time t = 0 the system is in
state |ψ(0)〉 = α|↑↑〉+ β|↑↓〉 with the normalization α2 + β2 = 1.

(a) Write the Hamiltonean Ĥ in a matrix representation in the above basis.

(b) Determine the eigenbasis of Ĥ.

(c) Express the state |ψ(0)〉 in terms of the eigenbasis of Ĥ.

(d) Calculate |ψ(t)〉 at a later time.
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2. (25 points) Consider a one-dimensional simple harmonic oscillator with an additional anhar-
monic term

H =
p2

2m
+

1

2
mω2x2 + λx4 . (2)

(a) What are the energy eigenvalues of H when λ = 0?

(b) What is the shift in the lowest energy eigenvalue found in part (a) to first order in λ?

(c) Find the energy shift to order λ2.

(d) Using a Gaussian trial function, make a variational estimate of the energy of the ground
state. You only need to obtain an explicit equation whose solution would give this estimate.
Solve this equation to first order in λ and compare your result with that in part (b).
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3. (35 points) Consider a spin-1/2 particle with spin s and magnetic moment µγs placed in a
time-independent magnetic field pointing in the z-direction: B = Bẑ.

(a) If at time t = 0 the particle’s spin in the x direction is measured and found to be +h̄/2,
what is the quantum state of the system, expressed in the basis of eigenstates of sz?

(b) If the state resulting from the measurement in part (a) evolves with time, what is the
resulting state at time |ψ(t)〉?

(c) Find the average values of particle spin in the y direction at the time t.

(d) If the spin of the state |ψ(t)〉 is measured in the ẑ cos(θ) + x̂ sin θ direction and the result
is −h̄/2 obtained, what will be the resulting quantum state?

(e) What is the probability that the value −h̄/2 in the measurement of part (d) is found?



Quantum Mechanics Qualifying Exam Name/SID:
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4. (12 points) A particle of mass m is contained within an impenetrable one-dimensional well
extending from x = −L

2
to x = L

2
. The particle is in its ground state.

(a) Find the eigenfunctions of the ground state and the first excited state.

(b) The walls of the well are instanteneously moved outward to form a new well extending from
−L < x < +L. Calculate the probability that the particle will be found in the ground
state (of the new configuration) after this sudden expansion.

(c) Calculate the probability that the particle will be found in the first excited state after the
expansion.



EM Fall 2018 Qualifying Exam

1. A parallel plate capacitor is made of two large conducting squares of area A
separated by a distance h. A dielectric of dielectric constant ε fills the volume between
the two plates. The capacitor is charged to potential V and then disconnected from
the source. Find

(a) the electric field E between the plates
(b) the electric displacement D between the plates
(c) the capacitance.
(d) The dielectric is now removed from between the plates. Find the work required

to remove the dielectric.
2. A charge Q is uniformly distributed along the z-axis from z = −a to z = a.

Find the potential at an arbitrary point (r, θ, φ) in a series expansion. You may
assume r > a.

3. An antenna of length L has its ends at the origin and at (0, 0, L). It carries a
current I = f(x) cos(ωt) where

f(x) =

{
x2 0 ≤ x ≤ L/2

(L− x)2 L/2 < x ≤ L
(1)

Find the radiation pattern to lowest order in the frequency.
4. A solenoid of radius a has n turns per unit length. It carries a time varying

current I = I0 sin(ωt). It is surrounded by a concentric loop of wire of radius b > a
and resistance per unit length ρ. Find the induced current in the second loop.
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