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1. (20pts)  Moving pendulum-- A pendulum of point mass m and massless rod of length l is 
attached to a point mass M that can move freely on a horizontal x-y plane. At time t=0, both 
particles are at rest and the rod forms an angle θ=θ0 with the z-axis on the x-z plane. The 
gravitational acceleration g is in the positive z-direction. Derive (A) equation of motion for 
θ(t), (B) solution of θ(t) if 𝜃𝜃0 ≪ 𝜋𝜋, and (C) pendulum frequency if 𝑚𝑚 ≪ 𝑀𝑀 in part (B). 
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2. (15pts) Ψ particle-- The particle called Ψ was discovered in an electron-positron collision: 

𝑒𝑒− + 𝑒𝑒+ → 𝛹𝛹. The mass of electron (or positron) is me and Ψ particle is 6.2 × 103𝑚𝑚𝑒𝑒. 

Calculate the minimal electron energy (in terms of 𝑚𝑚𝑒𝑒 and speed of light c), (A) if positron 

and electron approach each other with the same speed, and if (B) positron is at rest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. (15pts) Bead on a rotating hoop-- A bead of mass m is free to slide along a frictionless hoop 

of radius R. The hoop rotates with constant angular speed ω around a vertical diameter. The 

gravitational acceleration g points downward. (A) Find the Hamiltonian H in terms of the 

angle θ shown in the figure and its conjugate momentum p, and then write down Hamilton’s 

equations. (B) Is H the energy? Is H conserved? Why? 

 

 

 

 

 

 

 



Physics Qual - Statistical Mechanics
(

Spring 2018)

I. Experiments show that the specific heat of some (three-dimensional)
substance can be fitted quite closely to a law CV = aT

n at very low tem-
peratures. A model is proposed describing a gas of collective excitations
which obey Bose-Einstein statistics. The long-wavelength dispersion for
these excitations is ω(k) = b kα.
(a) What is the value of α required to obtain the power n?
(b) Under what conditions does Bose-Einstein condensation occur?

II. Metallic sodium can be thought of as being made up of a lattice of
sodium atoms and a gas of free electrons (each sodium atom contributes on
the average one free electron).

a) What is the classical value for the specific heat of a piece of sodium
containing N atoms?

b) Explain why the classical expression for the contributions of the lat-
tice and the electron gas to the specific heat are both incorrect at room
temperature.

c) What is the correct expression for the specific heat at room temperature?

III. Many organic molecules can form very large rings which act like one
dimensional “raceways” for nearly free electrons. Assume such an idealized
ring has a radius R which is fairly large compared to a single atom. Suppose
this ring has N electrons. Find the Fermi energy EF of the electrons on the
ring as a function of N , R, and other necessary physical constants (such as
the mass of the electron m).



Quantum Mechanics Qualifying Exam Name/SID:

Quantum Mechanics Ph.D. Qualifying Exam (Spring 2017)

Show all your work. Make sure to explain all your answers, especially if the answer
does not require a calculation.
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Quantum Mechanics Qualifying Exam Name/SID:

1. (25 points) In this problem we will consider a harmonic oscillator of mass m and frequency ω.
You may want to recall wave-functions of the two lowest energy eigenstates:

ψ0 =
(mω
πh̄

)1/4

e−
mωx2

2h̄ , ψ1 =
√

2
( mω

π1/3h̄

)3/4

xe−
mωx2

2h̄

(a) Multiple measurements of energy are performed. At the start of each measurement the

oscillator is in the state ψ(x) =
√

3
2
ψ0(x)+ 1

2
ψ1(x) . What values of energy can be observed

in each individual measurement? Find the average value of energy measured in a series of
experiments.

(b) Multiple measurements of momentum are performed. At the start of each individual
measurement the oscillator is in the ground state. What values of momentum can be
observed in each individual measurement? Find the probability that a single measurement
observes the momentum in an interval between p0 and p0 +dp (for some fixed p0 and small
dp). Find the average value of the momentum observed in multiple experiments.

(c) Assume that the oscillator is in the ground state at time t = 0. At time t1 > 0 the
momentum is measured to be p0 with an exremely high accuracy. Later, at time t2 > t1
a measurement of energy is performed on the same oscillator. Find probabilities that the
value of energy measured in this second experiment is each of the following: E = h̄ω

2
;

E = 3h̄ω
2

; E =
p2

0

2m
.

2. (45 points) Two particles of the same mass move in an infinite square well with walls at x =
±L/2. We will consider three different systems: A – two distinguishable spin 0 particles; B –
two indistinguishable spin 1/2 particles; C – two indistinguishable spin 1 particles.

(a) What are the possible values of the total spin (total angular momentum) J in system B?
How many different spin states does the system B have? Write down all spin states in the
total spin basis (i.e. eigenstates of J2 and Jz) in terms of states in the two particle basis
(i.e. in terms of eigenstates of s2

1, s1z, s
2
2, and s2z. (Hint: Start with the highest J and Jz

state and obtain other states by acting with spin lowering operators.)

(b) Repeat part (a) for system C.

(c) Derive the ground state energy and wave-function of system A.

(d) What is the degeneracy of the ground state of the system B? Which spin-wave-function(s)
in part (a) is (are) spin wave-function(s) of the ground state?

(e) Repeat part (d) for system C. (Hint: Carefully consider symmetry properties of the spin
and position space wave-functions when both particles are in the lowest eigenstate of the
square well potential.)

(f) What is the degeneracy of the first excited energy level in systems A? Write down the
wave-function(s) for all states of the first excited energy level. Repeat this for systems
B and C. For systems B and C write down position space wave-functions and identify
which spin wave-functions from parts (a) and (b) come with each of the position space
wave-functions.

(g) We now turn on perturbation V = k(x1−x2)2/2. For all three systems determine whether
degeneracy of the first excited energy level is lifted. For all three systems determine the
remaining degeneracy (if any). You do not need to calculate corrections to energy. (Hint:
here symmetry properties of the wave-functions are useful once again.)



Quantum Mechanics Qualifying Exam Name/SID:

3. (30 points) Consider a system two spin 1/2 particles in an external magnetic field described by
the Hamiltonean

H = AS1 · S2 +

(
e

mec

)
B · (S1 − S2) .

We will treat the second term as a small perturbation.

(a) Assuming that B = 0 find eigenstatates and eigenvalues of the Hamiltonean. Describe
eigenstates in terms of the eigenvalues of J2 and Jz (where J = S1 + S2).

(b) Assuming that the magnetic field is static, B = B0ẑ, use first order degenerate time-
independent perturbation theory to find energy levels and eigenstates of the perturbed
system. Label these eigenstates by J and m values of states into which perturbed states
turn in the B0 → 0 limit.

(c) At time t = 0 an additional a time-dependent perturbation is turned on, so that the full
magnetic field for t ≥ 0 is B = (B0 + b cos(ωt))ẑ. Will this magnetic field cause the
transitions between J = 0, m = 0 and J = 1, m = 0 levels found in part (b)? What about
transitions between J = 0, m = 0 level and J = 1, m = ±1 levels? Explain your answers.
Using first order perturbation theory calculate the transition probability as a function of
time for allowed transitions. (Hint: Be careful to distinguish between time-dependent and
time-independent parts of the perturbation.)

(d) Repeat part (c) if the magnetic field at t > 0 is B = B0ẑ + b cos(ωt)x̂. (Do not calculate
the transition probability here but give detailed answers to all other questions of part (c).)



EM Qualifying Exam Spring 2018

1. Three fixed charges are situated as follows: (i) there is a charge 4q at the origin (ii) there is a
charge 2q at (a, 0, 0) (iii) there is a charge −3q at (0, a, 0).

(a) Find the first three multipole moments (l = 0, 1, 2) of this configuration.
(b) What is the energy of this configuration?
(c) A fourth charge of magnitude q is initially at the point (b, 0, 0). What is the force on the

charge? Give all components.
(d) The fourth charge is moved from the point (b, 0, 0) to the point (0, b, 0). How much work is

done?

2. Two charges q and −q are initially sitting at (0, 0, a) and (0, 0,−a) respectively. At t = 0
they begin to oscillate; their positions after t = 0 are (0, 0, a + b sin(ωt)) and (0, 0,−a − b sin(ωt))
respectively.

One observer is at the location (d, 0, 0) and a second observer is at (0, d√
2
, d√

2
). You may assume

that d is large compared to all other distances.
At sufficiently large times, each observer will see some radiation. Calculate the energy flux per

unit angle (i.e. dP
dΩ

) for each observer to leading order in the frequency. State which kind of radiation
(electric dipole/ magnetic dipole/electric quadrupole) is produced.

3. A sphere of radius a has magnetic permeability µ. There is a surface current

~J = K0 sin(2θ)(− sinφî+ cosφĵ)δ(r − a) (1)

Note that the delta function already enforces that this is a surface current. Find the vector potentials
and the B-fields both inside and outside the sphere. Evaluate the integrals to the best of your ability.

4. A very thin insulating spherical shell of radius a is held at a surface potential V = V0 sin2 θ sin2 φ.
Find the total charge on the spherical shell. You may assume that all the charge is on the surface of
the shell.

1


