High Power Heating of Magnetic Reconnection in Toroidal Plasma Merging Experiments: TS-3, MAST **Yasushi Ono**

Graduate School of Frontier Sciences, University of Tokyo NRM Symposium, Newport CA, Aug. 24, 2015.

Univ. Tokyo, TS-Team : H. Tanabe, K. Gi, S. Inoue, T. Watanabe **CCFE Culham Science Center** MAST: B. Clowley, N. Conway, R. Scannel Tokamak Solution: M. Gryaznevich, A. Sykes Kyusyu Univ.: T. Yamada, JAERI: R. Imazawa, Nihon U.: T. Asai, AIST: H. Sakakita National Institute for Fusion Science: R. Horiuchi, S. Usami Hinode Solar Satellite Team (NAOJ): H. Hara, T. Shimizu

Why, Where and How much reconnection (FRC merging formation/ST rec. heating) heats ions and electrons? TS-3, TS-4, UTST, MAST based on UK-J collaborations Significant rec. heating of ions MAST $T_i > 1 \text{keV}$ 1) 2D T_i and T_e measurements TS-3, MAST 2) Ion acc./heating in downstream MAST, TS-3, PIC, Solar 3) Electron heating at X-point MAST, TS-3, PIC 4) Scaling of reconnection heating MAST, TS-3 5) Merging formation of high-T/beta tokamak MAST ST rec. heating : Ono et al. PPCF'12, PRL'11, POP'15, POP'93 FRC rec. heating: Ono, Kawamori et al. PRL'05, PRL'96, PFR'86

Univ. Tokyo-Culham Merging/ Reconnection Experiment 1986~TS-3 (R=0.2m) 2000~TS-4 (R=0.5m) 2006~UTST (R=0.45m)

for physics and application of reconnection heating

Number of merging/ reconnection experiments is over 10 now.

Advantages of merging formation over the conventional θ -pinch formation of FRC:

- (1) slow formation (elimination of fast capacitor bank).
- (2) highly efficient and stable formation proces
- (3) initial ion heating of merging
- (4) applicability of center OH coil for current-drive and heating.
- (5) elongation control

Y. Ono et al., Plasma Physics and Controlled Nuclear Fusion Research 1992

Y. Ono et al., Plasma Physics and Controlled Nuclear Fusion Research 1992

Watanabe (NIFS) PFR'00 made the 2D MHD simulation of couterhelicity merging spheromaks, including its heating effect.

ST Rec. Heating TS-3

In the downstream, hot T_i spot, steep increase in n_e B and dumping of flow appear, indicating fast shock form.

B_{rec}² -Scaling of Rec. Heating

B_{rec}²-scaling for direct ion heating by reconnection

1D measurements of T_i and T_e:
1) 32ch. Ion Doppler, 1') NPA
2) 200ch. Thomson scattering

From MAST data (UKAEA, Gryaznevich)

The MAST plasma has lower collisionality R~10⁵ and higher reconnecting B field than TS-3 and TS-4.

MAST: Visible light image of two merging tokamaks

High B_{rec} Merging in MAST

B_{rec}²-scaling for direct ion heating by reconnection

Summary and Conclusions

- 2) Electron heating occurs locally at X-point inside current sheet.
- 3) Ion heating power >> Electron heating power
- 4) The ion heating energy (T_i) increases with B_{rec}^2 .
- FRC formation by two spheromak with opposing Bt.
 - The rec. heating in MAST heats ions to 1.2keV and electrons to 0.8keV due to its higher B_{rec} ~0.15T
 - High R_m exp. is important to solve electron heating of rec.
- Direct ion heating by rec. is a promising method for heating ions > 10keV for fusion plasmas.