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Magnetic Reconnection Experiment
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Magnetic reconnection = Fundamental Process

L Dissipation Region

Local view of reconnection: filed line reconnection=> Topology Change
Conversion of magnetic energy to particle heating and acceleration



PRINCETON PLASMA

HOW do we StUdy magnetic reconnection in %inusmnunumnv
dedicated lab experiments?

1. We create a proto-typical reconnection layer in a controlled
manner and study the fundamental plasma dynamics

2. Cross-validation of experiment and numerical modeling

The primary issues/questions;

-  Why does reconnection occur so fast?

- Dynamics of electrons and ions

- How does local reconnection determine global phenomena?

- How is magnetic energy converted to plasma flows and
thermal energy?
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Experimental Setup and Formation of Current Sheet

Experimentally measured flux evolution

quilibrium field coils
Vacuum vessel

2-D magnetic
probe array
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Magnetic
Reconnection
Experiment

Poloidal Flux Evolution

Null-helicity Reconnection

Princeton Plasma Physics Laboratory, Princeton University



Local Reconnection Physics

1. MHD analysis
— 2. Two-fluid analysis
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Particle dynamics of the two-fluid reconnection layer

Normalized withz/A — z, V/V4 — V, B/Bg — B
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MRX with fine probe arrays

Linear probe arrays

* Five fine structure probe arrays with resolution up to Ax=2.5
mm in radial direction are placed with separation of Az= 2-3 cm



Evolution of magnetic field lines during reconnection in MRX

Measured region




Experimental Setup for Energetics Study

Magnetic Probe Array
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Electron dynamics and strong electron heating observed
in the broad exhaust region of MRX

Magnetic Field Lines and Electron Flow Vectors
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Ion acceleration and heating in the reconnection layer

He Il Spectra

Field Lines, Potential Profile, and [on Flow Vectors ' 120
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Ion heating 1s attributed to re-magnetization of accelerated 1ons
We note collisions play a role in 1on heating in the exhaust



Inventory of Energy

Magnetic energy inflow rate
1.0+0.1
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Magnetic energy Energy deposition Energy deposition
outflow rate rate to electrons rate to ions
0.49+0.05 | 0.18+0.04 | 0.37+0.07
MHD ' Change of | Change of flow
» component Mthermal energy f—) energy
0.22+0.02 0.14+0.05 0.07+0.02
Hall-field Energy loss rate Change of
» component ey (CONduction, mmm) thermal energy
27+0. radiation) 0.17+0.05
0.270.03 0.08+0.04
Energy loss rate

(Conduction,
- neutrals)
<0.16

Nature Communications (2014)



Energy conversion during magnetic reconnection

- Significant particle heating and acceleration observed in reconnection events
in the magnetosphere, solar flares and laboratory experiments.
- It 1s generally difficult to 1dentify the inventory and partitioning of energy

- QOur findings on energy partitioning in a reconnection layer is
remarkably consistent with the recent space results

Dayside
Magnetopause

D Plasmasheet

Magnetotail
\ 4 Y

J. Eastwood et al, 2013




Summary of findings on MRX reconnection research

MRX has been very productive; 15 plus PRL, Science, Nature papers et al.

Verified experimentally the two-fluid (collision-less) reconnection physics
— Verification of Hall effects
— Validation and verification of numerical simulation codes
— Identification electron diffusion layer => NASA’s MMS Project

|dentified the in-plane electric field which plays a key role for ion acceleration and heating
— lons are accelerated electrostatically near the separatrices.
— lons are heated downstream by re-magnetization and collisions.

Conversion magnetic energy and partitioning is quantitatively analyzed
in the reconnection layer
- Substantial component of outgoing magnetic energy (~ 50%)
- 50+% of incoming magnetic energy goes to plasma particles
2/3: to ions
1/3: to electrons



SPIRIT

(Self-organized Plasma by
Induction, Reconnection, Injection Techniques)



Attempts for simpler reactor core design
=> Compact Toroid Reactor Core

Spherical Torus Spheromak

FRC Reactor Embodiment

Field Reversed Configuration
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SPIRIT Concepts (1997 -)

“Self-organized Plasma
with Induction, Reconnection, and Injection Techniques”

Formation of FRC by
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Spheromak Merging Experiments in MRX
(Toroidal Energy => Plasma Kinetic Energy)

Plasmalln\itiation Spheromak Formation

I —— . N

R ) & |

5O -
N

Final CT

W I I

(1)

;)‘ PRINCETON PLASMA
PHVYSIIS LRABORATORY



Spheromak Merging Experiments in U. Tokyo
(Toroidal Energy => Plasma Kinetic Energy)

TS-3; Yamada et al PRL (1990)
Ono et al PRL(1996)

Norman’s 70 year Symposium (1995)



Strong 10n heating occurs
while toroidal field 1s annihilated

Strongest ion
Temperature Rise
During Merging
Phase
(285us-300us)

Strong Elimination
of Toroidal Field
Energy During
Merging
(285us-300us)

IDSP Time Scans, 9/8/05, Normal TF polarity
P=5mT, 14kV/12kV, Counter-Helicity
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Spheromak Merging is provide a promising option for the TAE project



CT Sustainment Campaign on MRX

* 68 turn Ohmic solenoid, Inconel liner
» Three capacitor banks for 4 coils (TF, PF, SF, Ohmic)

New 2D Probe Array
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Inductive Drive Generates More Flux,
Longer Sustainment
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Ohmic Sustainment for ~300us
Demonstrated
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Summary Notes

Compact toroid plasma concept to achieve a small, simple,
high efficiency, and economical reactor core.

Simple geometry

High power density

High beta ( FRC has highest equilibrium beta)
Can lead to advanced fuel reactor (P-B11, D-He?3)

Major challenges remain:
Obtain good confinement of plasma
Control of magnetic self-organization

To understand magnetic reconnection is a key

TAE is in the forefront to solve these major issues
=> M. Binderbauer’s talk



