CLEO San Jose May 10, 2012

# Exawatt-Zettawatt Laser-Based Fundamental High Energy Physics

#### T. Tajima and G. Mourou IZEST

Acknowledgments for Collaboration: W. Leemans, K. Nakajima, K. Homma, P. Bolton, M. Kando, S. Bulanov, T. Esirkepov, J. Koga, F. Krausz, D. Habs, B. LeGarrec, C., Barty, D. Payne, H. Videau, P. Martin, W. Sandner, A. Suzuki, M. Teshima, R. Assmann, R. Heuer, A. Caldwell, S. Karsch, F. Gruener, M. Somekh, J. Nilsson, W. Chou, F. Takasaki, M. Nozaki, D. Payne, A. Chao, J.P. Koutchouk, Y. Kato, E. Goulielmakis, X. Q. Yan, C. Robilliard, T. Ozaki, J. Kieffer, N. Fisch, D. Jaroszynski, A. Seryi, T. Kuehl, H. Ruhl, C. Klier, Y. Cao, B. Altschul, T. Seggebrock, K. Kondo, H. Azechi, K. Mima, H. Takabe, A. Ereditato, D. Autiero, M. Yoshida, T. Massard

 Cultivate the frontiers: Exawatt laser toward fundamental physics



- High energy frontier: compact laser accelerator sub-TeV and beyond with EW toward LWFA collider at <u>low density regime</u> at *IZEST* (PETAL laser)
- New compression technique at EW regime: Cascaded Compression Conversion (C<sup>3</sup>) method

plasma (instead of solid) as compressor in ultrahigh power regime

4. High average and high efficiency laser at high intensity: fiber laser technology

= CAN (Coherent Amplification Network)

*5. IZEST* missions:

fundamental physics with high intensity lasers in the world network

deployment of kJ laser (PETAL etc.) toward EW development of 10kW (and beyond) intense laser



#### 20<sup>th</sup> Century, the Electron Century Basic Research Dominated by Massive and Charged Particles (electronics)





J. J. Thomson



#### 21<sup>st</sup> Century; the Photon Century Could basic research be driven by the massless and chargeless particles; Photons (photonics)?



C. Townes



# GeV in the Palm

#### First GeV on few cm (W. Leemans et al)



## Laser Wakefield (LWFA): relativity regulates

Kelvin wake



Рис. 74. Наблюдаемая картина корабельных волн. [Любезно предоставлено Aerofilms Ltd.]

 $\begin{bmatrix} |\mathbf{x}|\mathcal{E}(\mathbf{x}) \\ T^3\sqrt{\lambda} \\ 0 \\ -30 \\ -15 \\ \pi T x_{\perp} \\ 0 \\ 15 \\ \pi T x_{\perp} \\ 0 \\ -30 \\ -45 \\ \pi T x_{\parallel} \\ 0 \\ -30 \\ \pi T x_{\parallel} \\$ 

Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008)

No wave breaks and wake **peaks** at v≈c



relativity
regularizes



Wave **breaks** at v < c



Maldacen



(The density cusps. Cusp singularity) (Plasma physics vs. superstring theory)



 $\propto n_e^{1/2}$ Accelerating field  $E_z$  $\propto n_e^{1/2}$ Focusing constant K $\propto n_e^{-3/2}$ Stage length  $L_{stage}$  $\propto n_e^{-1}$ Energy gain per stage  $W_{stage}$ Number of stages  $N_{\text{stage}}$  $\propto n_e$  $\propto n_e^{-\tilde{1}/2}$ Total linac length  $L_{total}$  $\propto n_e^{-1/2}$ Number of particles per bunch  $N_b$  $\propto n_e^{-1/2}$ Laser pulse duration  $\tau_L$  $\propto n_e^{-1}$ Laser peak power  $P_L$  $\frac{\propto n_e^{-3/2}}{\propto n_e^{1/2}}$ Laser energy per stage  $U_L$ Radiation loss  $\Delta \gamma$  $\propto n_e^{1/2}$ Radiative energy spread  $\sigma_{\gamma}/\gamma_f$  $\propto n_e^{-1/2}$ Initial normalized emittance  $\varepsilon_{n0}$ Collision frequency  $f_c$  $\propto n_e$  $\propto n_e^{1/2}$ Beam power  $P_b$  $\propto n_e^{-1/2}$ Average laser power  $P_{avg}$  $\propto n_e^{1/2}$ Wall plug power  $P_{wall}$ 

(Nakajima, PR STAB, 2011)

 $10^{17}$  /cc (conventional)  $\rightarrow 10^{15}$  /cc

#### **IZEST's Mission:** Responding to <u>Suzuki's</u> <u>Challenge</u>



Atsuto Suzuki: KEK Director General, former ICFA Chair

#### **New Paradigm**





## **PeV Accelerator**

With conventional Technology The accelerator would Girdle the Earth: Fermi's vision (1954)





1km laser Plasma accelerator with LIL or PETAL/LMJ (Vision 2011)



## Laser Intensity vs. Years





## **IZEST** Associate Laboratories





## **IZEST** Support Laboratories





 An international endeavor to unify the high Intensity laser and the high energy / fundamental physics communities to draw

> "The Roadmap of Ultra High Intensity Laser" and apply it to "Laser-Based Fundamental Physics"

 To form an international team of scientists that can foster and facilitate scientific missions of EW/ZW class lasers comprised from ICFA and ICUIL communities (in collab)

See more: www.int-zest.com/

Also: Tajima and Mourou PR STAB(2002)

### CEA kJ and MJ lasers underpin IZEST missions

PETAL : Main characteristics (One arm of LMJ)



energie atemique - energies alternatives



- Energy > 3 kJ\*,
- Wavelength > 1053 nm,
- Pulse duration between 0,5 and 10 picoseconds,
- Intensity on target > 10<sup>20</sup> W/cm<sup>2</sup>,
- Intensity contrast (short pulse): 10<sup>-7</sup> at -7 ps,
- Energy contrast (long pulse): 10<sup>-3</sup>.



B. LeGarrec (2011)



#### PETAL in the LMJ Building





## Laser-Based High Energy and Fundamental Physics: Exawatt to Zettawatt





Nakajima, LeGarrec

**Courtesy of PETAL** 

ZEST 6 ٢ Ζ LWFA ×. at LMJ/PETAL 0 ٢ (G 0 Ó 5 0 . 9 9

0

9

Courtesy of PETAL



A view of equatorial level of LMJ target chamber



#### Laser coupling section detail: LWFA in PETAL







G. Mourou et al. Opt. Comm.(2012)



## **Plasma Optics**

C<sup>3</sup> results from the cascaded actions of the three basic techniques, CPA, OPCPA, and Plasma Compression(PC). Optics can handle several **kJ/cm<sup>2</sup>**. Size reduction by1000 in area. Disposed after each shot.





Toward high-average power efficient HEP driver laser

(laser community, HEP community, and plasma community)

**ICAN**, International Coherent Amplification Network

"Solving the efficiency problem in high peak and high average power laser: an international effort"

EU funded ICAN(January, 2012)

European Commission

#### ICAN and FP7 The cold "facts and figures"

- ICAN International Coherent Amplification Network
- In "FP7 language", ICAN is a support action responding to a year 2011 call for proposals to *support policy development, including international cooperation, in its field of S & T*
- It was assigned the project number 284437
- It will last 18 months as from 16 January 2012
- The maximum EU contribution is EUR 500,000.00
- 4 beneficiaries form the Consortium

# Fiber vs. Bulk Lasers

- High Gain fiber amplifiers allow ~ 40% total plug-tooptical output efficiency
- Single mode fiber amplifier have reached multi-kW optical power.
- large bandwidth (100fs)
- immune against thermo-optical problems
- excellent beam quality
- efficient, diode-pumped operation
- high single pass gain
- mass-produced at low cost.





## **Concept: coherent fiber bundles**

Because the transport fibers <u>lossless</u>, assembled in a bundle just before the focusing optics. all <u>coherently</u> phased.



(Mourou et al)

## 64 fiber alignment

#### UT I INCLIVICUL UP

- Insertion des fibres
  - Insertion des 64 fibres, alignement PM (° près), collage
  - Polissage collectif de la surface de sortie des fibres



Composant intégré nour le maintien des fibres

## 64 fiber coupling

#### Génération de 64 faisceaux fibrés





 $\uparrow\uparrow\uparrow\uparrow$ 

## Efficient Amplification of Fiber Laser



#### In the temtosecond

#### **Combining efficiency > 90%**



L. Daniault, M. Hanna, L. Lombard, D. Goular, P. Bourdon, F. Druon, P. Georges "Coherent combining of two femtosecond fiber chirped pulse amplifiers" Oral : Advanced Solid State Photonics, ASSP 2011, Istanbul, Turkey (February 13-16 2011)

Accepted: Optics Letters, L. Daniault et al, « Coherent beam combining of two femtosecond fiber chirped pulse amplifiers »

### Broad applications of high-average Power Fiber Lasers PW/>10kW/ 10J/kHz/20% efficient

- Preliminary conclusion. Design a demonstrator highly relevant to science, engineering that will put europe in leadership position, benefit the industry. It will include 10<sup>4</sup> fibers:
  >10J, >1kHz, >20% efficient(>10kW capable to produce 10GeV electrons, GeV protons).
- Such an infrastructure could validate:
  - 1. TeV laser collider concept
  - 2. Free Electron Laser in the High X-ray regime comparable to LCLS-SLAC but at >1kHz and much more compact.
  - 3. X-ray, Gamma ray
  - 4. Proton therapy
  - 5. Laser Fusion (No need for cophasing)
  - 6. B-Factory and such.
  - 6. And the « Summum Bonum »; Accelerator Driven Reactor(ADR)



### Conclusions

- GeV electrons in a palm by LWFA
- kJ-MJ energy lasers (such as PETAL) : TeV in low density regime
- *IZEST* with PETAL laser launches 100GeV project ("IZEST 100GeV Ascent Workshop" in Bordeaux, May31-June1, 2012)
- *IZEST* mixes the communities of laser and high energy physics
- *IZEST* develops EW laser system with C<sup>3</sup> amplification
- ICAN project launched for high-average power laser technology
- New vigorous way of doing fundamental physics with intense lasers emerging



Crab nebula: Cosmic PeV accelerating machine

# Thank you!

