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We propose a torque method for the theoretical determination of the magnetocrystalline anisotropy~MCA!
energy for systems with uniaxial symmetry. While the dependence of the total energy on the angle between the
magnetization and the normal axis (u) can be expressed asE(u)5E01K2sin

2(u)1K4sin
4(u), we show that the

MCA energy @defined asEMCA5E(u590°)2E(u50°)5K21K4# can be easily evaluated through the ex-
pectation value of the angular derivative of the spin-orbit coupling Hamiltonian~torque! at an angle of
u545o. Unlike other procedures, the proposed method is independent of the validity of the MCA force
theorem, or of the absolute accuracy oftwo total energy calculations. Calculated MCA energies for the free Fe
monolayer with different lattice constants are analyzed and compared with results of otherab initio calcula-
tions, especially those obtained with our previously reported state tracking method.@S0163-1829~96!02926-8#

Recent developments in magnetic thin films and overlay-
ers that show perpendicular magnetic anisotropy1 with their
tremendous practical implications for high-density magneto-
optical storage media, have stimulatedab initio theoretical
determinations of the magnetocrystalline anisotropy energy
~MAE!.2–12 Unfortunately, despite the great advances in
local-spin-density electronic structure theory and computa-
tional power in the past decades, the accurate determination
of MAE still remains difficult and computationally demand-
ing. In the traditional approach, the value of MAE is calcu-
lated through comparing the total energies of a given system
for two different magnetization orientations~in-plane and
perpendicular directions for surface-interface systems!. Since
the spin-orbit coupling~SOC! is very weak in 3d transition
metals, the so-called magnetocrystalline anisotropy~MCA!
force theorem6 is usually adopted and the MAE is calculated
by merely comparing the band energies between the two
magnetic orientations.~We call them direct approaches.! The
main difficulty associated with the direct approaches con-
cerns the numerical stability of calculating a very small dif-
ference of two large numbers. In fact, in order to eliminate
numerical fluctuations,3–7,9 extremely fine sampling meshes
are required for thek-space integrations.

In this paper, we propose a torque method for the deter-
mination of MCA. The main advantage that this method of-
fers is that one only needs to calculate MAE at one particular
magnetic orientation and to do thek-space integration with
the single Fermi surface at this orientation. In the following,
we first present the method, then give results for free stand-
ing Fe monolayers as a test case, and compare them with the
results of other methods.3–5,9

To demonstrate the idea, let us recall that the total energy
of an uniaxial system can be well approximated in the form

E~u!5Eo1K2sin
2~u!1K4sin

4~u!, ~1!

whereu is the angle between the magnetization and the nor-
mal axis. If we define the torque,T(u), as the angular de-
rivative of the total energy, i.e.,

T~u![
dE~u!

du
5K2sin~2u!12K4sin~2u!sin2~u!, ~2!

it is easy to show that

MAE[E~u590°!2DE~u50°!

5K21K45T~u545°!. ~3!

As usual, a positive MAE means a perpendicular magnetic
anisotropy. Clearly, the MAE can be evaluated very effi-
ciently through calculating the torque atu545° even when
K4 is not negligible.

We next come to the question of how to calculate the
torque. Within the framework of local-spin-density theory,
including SOC, the total energy of the system is6

E@rs~u!;u#5(
occ.

e@rs~u!;u#1E8@rs~u!#, ~4!

where we have separated the total energy into the Kohn-
Sham band energy and the remaining double counting terms,
E8. Note that the total energy depends onu both explicitly
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~through the SOC Hamiltonian! and implicitly ~through the
angular dependence of the charge and spin densities!. These
two sources of the dependence of the total energy onu are
not to be confused. To calculate the torque at a certain angle
u, we can write

E@rs~u1du!;u1du#2E@rs~u!;u#

5$E@rs~u1du!;u1du#2E@rs~u!;u1du#%

1$E@rs~u!;u1du#2E@rs~u!;u#%

5O@du2# 1(
occ.

e@rs~u!;u1du#2(
occ.

e@rs~u!;u#

5
1

VBZ
E
VF

de~k!dk1
1

VBZ
E

dVF
e~k!dk

5
1

VBZ
E
VF

de~k!dk1
eF

VBZ
E

dVF
dk

5
1

VBZ
E
VF

de~k!dk, ~5!

whereVBZ is the volume of the Brillouin zone and we have
made use of the stationary property of the total energy with
respect to variations in charge-spin density~but not in u).
Also in obtaining the last equality in Eq.~5!, we have used
the fact that the Fermi volume should remain constant.

Having obtained Eq.~5!, we can apply the Feynman-
Hellman theorem to obtain the torque as

T~u!5(
occ.

K c i ,k
soU ]Hso

]u Uc i ,k
so L , ~6!

where the spin-orbit coupling Hamiltonian is

Hso5(
i

j~r i ! l̂ i• ŝ, ~7!

and the indexi refers to atoms andl̂ i52 i r i3¹. If we let the
magnetization direction ben(u,f), we can write the spin-
orbit coupling term as

l̂ i• ŝ5 ŝn~ l̂ zcosu1 1
2 l̂1e

2 ifsinu1 1
2 l̂2e

ifsinu!

1 1
2 ŝ1S 2 l̂ zsinu2 l̂1e

2 ifsin2
u

2
1 l̂2e

ifcos2
u

2D
1 1

2 ŝ2S 2 l̂ zsinu1 l̂1e
2 ifcos2

u

2
2 l̂2e

ifsin2
u

2D ,
~8!

from which the derivative with respect tou is straightfor-
ward.

Note that here the Fermi energy and wave functions are
determined with the spin-orbit coupling included and the re-
sults obtained so far do not rely upon the validity of the
MCA force theorem.13 Calculations can be simplified, how-
ever, for situations where the MCA force theorem is valid. In
such cases, one only needs the self-consistent scalar relativ-

TABLE I. Calculated Fe monolayer MAE~meV/atom! by different groups and/or methods~see text for
description and comparisons!.

a ~a.u.! Torque method State tracking~Ref. 9! LCAO ~Refs. 3 and 4! FLAPW ~Ref. 5!

4.83 0.21 0.42 0.61~Ref. 3!
5.45 20.10 0.37 0.38~Ref. 4! 20.033–20.043

FIG. 1. Calculated torque vs the angleu for an Fe monolayer
(a54.83 a.u.!. The diamonds are the calculatedT(u), and the solid
line is the fitted 0.202sin(2u) curve.

FIG. 2. MAE vs band filling for an Fe monolayer (a54.83 a.u.!.
The diamonds are the results obtained by the linear interpolation
method ink-space integration, and the line is by the quadratic in-
terpolation method. Convergence of thek-space integration may be
assumed since the two agree to better than 0.05 meV.
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istic charge-spin density or potential and then performs one
second-variational calculation with the SOC Hamiltonian in-
voked. This is the procedure adopted in the calculations pre-
sented below.

We used the full-potential linearized augmented plane
wave ~FLAPW! method with a slab geometry14 to get the
self-consistent scalar relativistic charge-spin densities and
potentials. With 55k points in the 1/8 irreducible BZ, self-
consistency for the scalar relativistic calculations is assumed
when the rms difference between the input-output charge and
spin densities become better than 1024 e/a.u.3. To determine
the MAE, we use triangular interpolation fork-space integra-
tions. The number ofk points is assumed to be sufficient
when the linear and quadratic interpolations give better than
0.05 meV agreement. We found, for most cases, that a 20 by
20 division of the BZ is sufficient to assure convergence.

A good test whether our numerical results are stable
enough against noise from the finitek points used in the
k-space integrations for torque is to calculate torques for
different u. As indicated in Eq.~2!, the torque versusu
should be a smooth function and in most cases, since
K4!K2 , we should expect a sin(2u) behavior. Since we used
the self-consistent scalar relativistic potential in our calcula-
tion, we can only be sure of the leading order contribution to
the MAE, i.e.,K2 ~Ref. 13! and no meaningfulK4 value can
be obtained. To demonstrate that this is actually true, we
show in Fig. 1 theT(u) curve for an Fe monolayer with
lattice constant 4.83 a.u. We see that well within our conver-
gence criteria, the calculated points fit nicely to a
0.202sin(2u) curve. Also shown in Fig. 2 for this same test
system is the torque calculated at 45° versus band filling
where a rigid band picture is adopted. We see that the linear
interpolation results~diamonds! agree everywhere with the
quadratic interpolation~solid line! to better than 0.05 meV.

For Fe monolayers, there have been several publishedab
initio results.3–5,9Shown in Table I is a comparison between
our results and previous attempts using different
methods.3–5,9 Although the trend for MAE in going from
smaller to larger lattice constant is the same among the dif-
ferent groups~i.e., as the lattice constant increases MAE be-
comes less positive!, several comments are necessary for the
apparent disagreement in the actual numbers. Gay and
Richter3,4 employed a traditional direct approach and used
14 000 k points in the Brillouin zone to achievek-space
convergence. However, their linear combination of atomic
orbitals ~LCAO! band structure calculation method is less
accurate than the FLAPW. An early FLAPW calculation
done by Liet al.5 also used blind Fermi filling9 and the result
is given within a certain range due to numerical uncertain-
ties. Although the state tracking method used by Wang
et al.9 was demonstrated to be very efficient in suppressing
the fluctuations caused by blind Fermi filling, the small set of
samplingk points employed in the irreducible Brillouin zone
~15 k points for semirelativistic self-consistency and 66k
points for MAE integrations! also raised some uncertainties.

In fact, we found that with more than 210k points, the
state tracking approach gives almost the same MAE as does
the present torque approach. This is reasonable because the
contribution due to the slightly different Fermi surface in the
two approaches, which to orderj2 can be explicitly ex-
pressed as (EF /VBZ)*dVF

dk, is zero because the number of

electrons is fixed. In surface-interface systems, it is well
known that the dominant contribution to MAE is of the order
of j2, and so as a practical method the state tracking ap-
proach is a very good approximation in determining the lead-
ing order contribution to the MAE for these systems. Indeed,
when the MCA force theorem is to be applied with a limited
number ofk points, the state tracking method is necessary to
ensure that the change of charge and spin densities be of
orderj2 and thus to suppress the Fermi surface fluctuations.9

Since for transition metals, contributions to the MAE
from terms of higher order thanj2 was estimated to be
;0.1 meV/atom,9 different methods of determining the
Fermi surface should agree within this range. Our well-
converged results using the torque method~where the Fermi
surface is determined by Fermi-Dirac statistics! and using the
state tracking method do confirm this conclusion. This is
demonstrated in Table II where the results obtained by the
torque and state tracking methods for Fe monolayers with
lattice constants equal to 4.83 and 5.45 a.u. are shown. These
numbers match the fcc Cu~100! and Ag~100! substrates’ lat-
tice constants, respectively.

The numerical advantage of the torque method is obvious
even compared to the state tracking approach. First, one only
has to deal with one magnetization direction and hence with
only one Fermi surface. This is a very important feature es-
pecially when some heavy elements~e.g., Pt! are involved
for which the spin-orbit coupling has to be treated self-
consistently. Since now the MAE can be obtained with only
one angle, we can easily get rid of the numerical uncertainty
inherent in the direct approaches whereas current total en-
ergy calculations can hardly achieve a precision of better
than 1 meV. In addition, the MAE is evaluated as the expec-
tation value of the angular derivative of the SOC Hamil-
tonian over all the occupied states. The contribution of the
nearly degenerate states atEF ~the so-called surface pair cou-
pling! is thus effectively suppressed. In fact, we found that a
combination of the state tracking and the torque approaches
provide very stable results of the MAE even for complex
systems such as Co/Cu sandwich and superlattice systems.15

Very recently, this approach was also successfully applied
for the determination of the tiny magnetostriction in bulk
transition metals and thin films.16

We thank F. Y. Rao for help with some of the calcula-
tions. Conversations with V. P. Antropov and O. N. Myrasov
on torque methods from the Green’s function point of view
were also helpful. This work was supported by the Office of
Naval Research~Grant No. N00014-94-1-0030 and N00014-
95-1-0489! and a grant of computer time at the Arctic Re-
gion Supercomputing Center.

TABLE II. Calculated MAE~meV/atom! for Fe monolayer sys-
tems with lattice constant 4.83 and 5.45 a.u. using the torque
method and state tracking method. Convergence ofk-space integra-
tion in both methods is made better than 0.05 meV/atom.

a ~a.u.! Torque method State tracking

4.83 0.21 0.24
5.45 -0.10 0.00
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