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The 2007 discovery of quantized conductance in HgTe quantum wells delivered the field of topological

insulators (TIs) its first experimental confirmation. While many three-dimensional TIs have since been

identified, HgTe remains the only known two-dimensional system in this class. Difficulty fabricating

HgTe quantum wells has, moreover, hampered their widespread use. With the goal of breaking this

logjam, we provide a blueprint for stabilizing a robust TI state in a more readily available two-dimensional

material—graphene. Using symmetry arguments, density functional theory, and tight-binding simulations,

we predict that graphene endowed with certain heavy adatoms realizes a TI with substantial band gap. For

indium and thallium, our most promising adatom candidates, a modest 6% coverage produces an

estimated gap near 80 K and 240 K, respectively, which should be detectable in transport or spectroscopic

measurements. Engineering such a robust topological phase in graphene could pave the way for a new

generation of devices for spintronics, ultra-low-dissipation electronics, and quantum information

processing.
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I. INTRODUCTION

When certain physical properties of a system depend on
global topology—and not on local details, such as disor-
der—then the system is said to realize a topological phase.
By virtue of their universality, rooted in this independence
of microscopic details, topological phases are both para-
digmatically interesting and thought to possess seeds
of important future technologies. Until rather recently,
experimental studies of topological phases were confined
to the quantum Hall effect, seen in high-quality two-
dimensional electron systems subjected to strong magnetic
fields. The advent of topological insulators (TIs), a class of
two- and three-dimensional nonmagnetic crystalline solids
enjoying strong spin-orbit coupling [1–3], opened a fasci-
nating new chapter in the field.

Two-dimensional TIs are commonly referred to as quan-
tum spin-Hall (QSH) states [1–3] due to their similarity to
integer quantum Hall liquids. A defining signature of a
QSH state is the existence of gapless edge states which are
protected from elastic backscattering and localization by
time-reversal symmetry ðT Þ. This feature, combined with
the spin-filtered nature of the edge modes, renders such
systems technologically very promising. Furthermore,
when in contact with a superconductor, the edges are
predicted to host Majorana fermions [4], which play an
important role in topological quantum computation
schemes [5]. The QSH state was first predicted to arise in
graphene [6], although later it was realized that, due to

carbon’s small atomic number, spin-orbit coupling is too
weak to produce an observable effect under realistic con-
ditions. (First-principles calculations [7–11] on pristine
graphene all predict sub-Kelvin gaps for this phase.) The
QSH state was subsequently predicted in several other
materials, including HgTe and InAs/GaSb quantum wells
[12,13] and bilayer bismuth [14]. While landmark experi-
ments indeed observed this phase in HgTe [15], experi-
mental activity on the QSH effect has remained limited
by notorious practical difficulties associated with HgTe-
based structures.
Given the comparative ease with which graphene can be

fabricated, it would be highly desirable to artificially en-
hance graphene’s spin-orbit coupling strength to elevate the
gap protecting the QSH state to observable levels. A prac-
tical means of doing so would pave the way to a new
generation of QSH experiments accessible to a broad spec-
trum of researchers worldwide. Previous work has explored
the possibility that strong interactions [16–18] or radiation
[19] might drive graphene into a robust topological phase.
Our goal in this manuscript is to explore a practical new
route to this end. Specifically, we ask whether graphene can
‘‘inherit’’ strong spin-orbit coupling from a dilute concen-
tration of heavy adatoms (whose innate spin-orbit coupling
strength can be on the electron-volt scale) deposited ran-
domly into the honeycomb lattice.
The basic principle underlying our proposal can be

understood by considering processes in which an electron
from graphene tunnels onto an adatom—whereupon it
‘‘feels’’ enormous spin-orbit coupling—and then returns
to the graphene sheet. Such processes in effect locally
enhance graphene’s spin-orbit strength manyfold. A viable
proposal must, however, address numerous competing ef-
fects. For instance, adatoms often form local magnetic
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moments [20] which potentially spoil the time-reversal
symmetry protecting the QSH effect. Moreover, adatoms
generically mediate both intrinsic and Rashba spin-orbit
coupling. The latter is believed to be detrimental to the
QSH phase [6], and previous work has indeed established
that certain kinds of adatoms do generate substantial
Rashba coupling in graphene that typically overwhelms
the intrinsic contribution [21–23]. (As Ref. [23] showed,
however, magnetic adatoms inducing strong Rashba cou-
pling can induce an interesting ‘‘quantum anomalous
Hall’’ state in graphene.) The adatoms may also favor
competing, ordinary insulating states depending on their
precise locations in the lattice. And finally, since spin-orbit
coupling is generated nonuniformly in graphene, the stabi-
lization of a QSH phase even in an otherwise ideal situation
is unclear a priori.

After an extensive search using tight-binding and first-
principles analyses, we have found that two elements,
indium and thallium, are capable of stabilizing a robust
QSH state in graphene. Neither element forms a magnetic
moment, and although they do generate significant Rashba
coupling, for symmetry reasons this remarkably does not
suppress the QSH state. We find that gaps many orders of
magnitude larger than that predicted in pure graphene can
form even with coverages of only a few percent; for
example, at 6% coverage, indium yields a gap on the order
of 100 K, while for thallium the gap approaches room
temperature. These predictions revive graphene as a viable
QSH candidate, and they can be verified by probing the gap
and associated edge states using spectroscopic and con-
ductance measurements.

II. PHYSICS OFA SINGLE HEAVYADATOM

To set the stage, let us first briefly review the Kane-Mele
model [6] describing pure, undoped graphene with spin-
orbit coupling. The Hamiltonian can be expressed as
HKM ¼ Ht þHso, where Ht describes the usual nearest-
neighbor hopping and Hso encodes intrinsic spin-orbit

coupling. In terms of operators cyr� that add electrons
with spin � to site r of the honeycomb lattice and Pauli
matrices sx;y;z that act on the spin indices, Ht and Hso

explicitly read

Ht ¼ �t
X
hrr0i

ðcyr cr0 þ H:c:Þ; (1)

Hso ¼ �so

X
hhrr0ii

ði�rr0c
y
r s

zcr0 þ H:c:Þ: (2)

Here and below, spin indices are implicitly summed when-
ever suppressed. In Eq. (2) the sum runs over second-
nearest-neighbor lattice sites, and �rr0 are signs that equal
þ1, if an electron hops in the direction of the arrows in
Fig. 1(c), and �1 otherwise. Thus Hso describes ‘‘chiral’’
spin-dependent second-neighbor electron hopping. When
�so ¼ 0, the band structure exhibits the familiar gapless

Dirac cones centered on momenta �Q, resulting in semi-
metallic behavior. Turning on �so � 0 generates an energy

gap [6] � ¼ 6
ffiffiffi
3

p j�soj at the Dirac points, transforming the
system into a (very fragile [7–11]) QSH insulator.
Importantly, if mirror symmetry with respect to the
graphene plane is broken, then Rashba coupling—which
involves spin flips and thus breaks the U(1) spin symmetry
enjoyed by H—will also be present [6]. Rashba coupling
competes with the intrinsic spin-orbit term in pure gra-
phene, and, beyond a critical value, it closes the gap and
destroys the QSH state.
If heavy adatoms are to stabilize a more robust QSH

phase in graphene, then, at a minimum, they should be
nonmagnetic (to preserve T ) and modify the physics near
the Dirac points primarily by inducing large intrinsic spin-
orbit coupling. The latter criterion leads us to focus on
elements favoring the ‘‘hollow’’ (H) position in the gra-
phene sheet indicated in Fig. 1(a). Compared to the
‘‘bridge’’ (B) and ‘‘top’’ (T) positions, adatoms in the
H position can most effectively mediate the spin-dependent
second-neighbor hoppings present in the Kane-Mele
model, while simultaneously avoiding larger competing
effects such as local sublattice symmetry-breaking gener-
ated in the T case.
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FIG. 1. Adatoms in graphene. (a) Depending on the element,
adatoms favor either the high-symmetry ‘‘bridge’’ (B), ‘‘hollow’’
(H), or ‘‘top’’ (T) position in the graphene sheet. (b) Detailed
view of an H-position adatom, which is best suited for inducing
the intrinsic spin-orbit coupling necessary for stabilizing the
topological phase. The desired spin-orbit terms mediated by
the adatom are illustrated in (c). Red and yellow bonds represent
the induced second-neighbor imaginary hopping, whose sign is
indicated by the arrows for spin-up electrons. For spin-down
electrons, the arrows are reversed.
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Since H-position adatoms generically reside on one side
of the graphene sheet, they will clearly mediate Rashba
spin-orbit coupling as well, leading to a potentially delicate
competition. If the adatoms’ outer-shell electrons derive
from p orbitals, however, the induced intrinsic spin-orbit
terms always dominate over the induced Rashba interac-
tions. One can establish this key result by studying
graphene with a single adatom of this type. To model this
setup, we employ operators dm� for the adatom states, with
m ¼ 0, �1 and � ¼" , # labeling the orbital and spin
angular-momentum quantum numbers. The coupling of
these orbitals to graphene is conveniently expressed in
terms of the following operators:

Cm� ¼ 1ffiffiffi
6

p X6
j¼1

e�ið�=3Þmðj�1Þcrj�; (3)

where the sum runs over the six sites surrounding the
adatom shown in Fig. 1(b). Guided by symmetry
(see Appendix A), we consider the following minimal
Hamiltonian for this single-adatom problem:

H ¼ Hg þHa þHc; (4)

Hg ¼ Ht � ��
X6
j¼1

cyrjcrj ; (5)

Ha ¼ X
m¼0;�1

�jmjd
y
mdm þ�soðdy1 szd1 � dy�1s

zd�1Þ

þ ffiffiffi
2

p
�0

soðdy0 s�d�1 þ dy0 s
þd1 þ H:c:Þ; (6)

Hc ¼ � X
m¼0;�1

ðtjmjC
y
mdm þ H:c:Þ; (7)

with s� ¼ ðsx � isyÞ=2. Here Hg represents the nearest-

neighbor hopping model of graphene supplemented by a
chemical potential �� for the six sites surrounding the
adatom. Physically, a nonzero �� leads to an excess
electron density at those sites, screening any net charge
from the adatom. Crystal-field effects and spin-orbit cou-
pling split the adatom p orbitals through the �jmj and �so,

�0
so terms in Ha. Finally, Hc allows electrons to tunnel

between the adatom and its neighboring carbon sites. All
couplings in H are real except t1, which is pure imaginary.
Note also that we have ignored the exceedingly weak
spin-orbit terms that couple the electrons in graphene
directly, as well as Coulomb interactions for the adatom.
Exclusion of these latter terms is justified for the non-
magnetic adatoms that we will consider below.

Recalling that intrinsic spin-orbit coupling in graphene
conserves the Sz spin component while Rashba coupling
does not, one can readily understand how the adatom
mediates both kinds of interactions by viewing the tunnel-
ings in Hc perturbatively. For example, when an electron
hops onto them ¼ 0 orbital via t0, flips its spin through the

�0
so coupling, and then hops back to the honeycomb lattice

via t1, spin-orbit coupling of the Rashba type is locally
generated in graphene. In sharp contrast to the situation for
the Kane-Mele model, however, Rashba terms mediated in
this fashion are irrelevant for the low-energy physics. This
crucial feature can be understood by Fourier transforming
C0�; remarkably, the components with Dirac-point mo-
menta �Q vanish identically. More physically, electrons
near the Dirac points interfere destructively when hopping
onto the m ¼ 0 adatom orbital. (See Appendixes A and D
for complementary perspectives.) We stress that this argu-
ment holds only for p orbitals. If the relevant adatom
orbitals carry higher angular momentum, spin-flip pro-
cesses which do affect the Dirac points will generically
appear. The induced Rashba terms may still be subdomi-
nant, although whether this is the case depends on details
of the Hamiltonian, unlike the situation for p orbitals.
In contrast, Sz-conserving events whereby an electron

hops both onto and then off an m ¼ �1 orbital via t1
locally mediate the desired intrinsic spin-orbit interactions.
No obstruction exists for tunneling onto the m ¼ �1 orbi-
tals via t1, so these processes can effectively modify the
physics near the Dirac points. It is important to note,
however, that t1 hopping mediates additional couplings
as well, so the dominance of these spin-orbit terms remains
unclear. Nevertheless, given the high symmetry preserved
by the H-site adatom, none of the conventional broken-
symmetry gapped phases of graphene—such as charge-
density wave or ‘‘Kekule’’ orders—is obviously favored
here, so it is reasonable to expect these additional terms to
play a relatively minor role. We explicitly confirm this
intuition in the multiadatom situation, to which we now
turn.

III. PERIODIC ADATOM CONFIGURATIONS

As a first step in understanding the multiadatom case, we
examine a periodic system with one adatom residing in a
large N � N supercell. This situation allows us to utilize
density functional theory (DFT) to ascertain suitable heavy
elements and obtain a quantitative understanding of their
effects on graphene. (See Appendix B for computational
details.) To ensure large spin-orbit coupling, we focused on
elements in rows five and six of the periodic table, includ-
ing In, Sn, Sb, Te, I, La, Hf, Pt, Au, Hg, Tl, Pb and Bi.
For each element, we calculated the total energy in the
three adsorption geometries shown in Fig. 1(a) along
with the adatom’s spin moment. Our calculations reveal
that two elements—indium (atomic number Z ¼ 49) and
thallium (Z ¼ 81)—satisfy our criteria of both favoring
the high-symmetry H position and being nonmagnetic.
Furthermore, both elements exhibit partially filled p shells,
ensuring that the Rashba coupling they mediate in gra-
phene is benign at the Dirac points.
It is instructive to first examine the electronic properties

of indium on graphene in a 4� 4 supercell, without
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spin-orbit coupling. As Fig. 2(a) illustrates, the Dirac cones
characteristic of pure graphene indeed remain massless—
despite the reduced translation symmetry, conventional
gapped phases are not stabilized here, consistent with the
intuition developed in the single-adatom case above.
Indium does, however, electron-dope graphene and
shifts the Fermi level EF to 0.95 eV above the Dirac
points. From the adatom’s local density of states (LDOS)
displayed in Fig. 2(a), one can see that indium’s 5p
orbitals lie almost entirely above EF, implying that
the 5p electron in neutral indium nearly completely
transfers to graphene. (The charge of an indium adatom
is þ0:8e from the Bader charge division scheme.)
Note that the relatively diffuse pz LDOS indicates
that this orbital hybridizes more strongly with graphene
compared to the px;y orbitals. Replacing indium with thal-

lium, again without spin-orbit coupling, leads to the band
structure and LDOS shown in Fig. 2(d). Clearly the elec-
tronic structure is modified very little by this substitution;
importantly, the Dirac cones remain massless with thallium
as well.

Thus any gap opening at the Dirac points must originate
from spin-orbit coupling. Figure 2(b) displays the band
structure and LDOS for spin-orbit-coupled indium on gra-
phene. Note the sizable spin-orbit splitting in the LDOS for
the px;y orbitals. More remarkably, a gap �so � 7 meV

now appears at the Dirac points, which already exceeds the
spin-orbit-induced gap in pure graphene [7–11] by several
orders of magnitude. The analogous results for thallium—
whose atomic mass is nearly twice that of indium—are still
more striking. As Fig. 2(e) illustrates, p-orbital splittings
of order 1 eV are now evident in the LDOS, and a gap
�so � 21 meV opens at the Dirac points. We emphasize
that these results apply for adatom coverages of only
6.25%. To explore the dependence of �so on the adatom
coverage, we additionally investigated systems with one
adatom in 5� 5, 7�7, and 10�10 supercells. (For N � N
supercells with N a multiple of 3, the Dirac points reside at
zero momentum and can thus hybridize and gap out even
without spin-orbit coupling. We therefore ignore such
geometries.) The values of �so along with the Fermi
level EF computed for the coverages we studied appear
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FIG. 2. Band structure and the adatom local density of states (LDOS). All data correspond to one adatom in a 4� 4 supercell, with
the upper row corresponding to indium and the lower row corresponding to thallium. The left panels in (a) and (d) correspond to the
band structure and LDOS computed using DFT without spin-orbit coupling. The horizontal dashed red lines indicate the Fermi level
(EF), which shifts due to electron-doping from the adatoms. Insets zoom in on the band structure near the K point within an energy
range �35 to 35 meV, showing that, without spin-orbit interactions, neither indium nor thallium opens a gap at the Dirac points. The
central panels in (b) and (e) are the corresponding DFT results including spin-orbit coupling. Remarkably, in the indium case, a gap of
7 meV opens at the Dirac points, while, with thallium, the gap is larger still at 21 meV. Finally, the right panels in (c) and (f) were
obtained using the tight-binding model described in Sec. III.

WEEKS et al. PHYS. REV. X 1, 021001 (2011)

021001-4



in Fig. 3. Quite naturally, the gap decreases as one reduces
the coverage, as does the Fermi level since fewer electrons
are donated to graphene at lower adatom concentrations. It
is worth highlighting that the gap decreases sublinearly and
that a sizable �so � 10 meV remains even with a mere
2.04% thallium concentration.

Since spin-orbit coupling clearly underlies the gap
onset, it is tempting to associate the insulating regime
opened by the adatoms with a QSH state. To verify
this expectation, we appeal to tight-binding simulations
of the 4� 4 supercell geometry. We model the system
by a Hamiltonian H4�4 consisting of uniform hopping
for graphene (including weak second- and third-neighbor
tunneling) supplemented by the additional local terms
in Eq. (4) at each adatom. Figure 2(c) displays the
tight-binding band structure and adatom LDOS for in-
dium with the following parameters: first, second, and
third-neighbor graphene hoppings t ¼ 2:82 eV, t0 ¼
0:22 eV, and t00 ¼ 0:2 eV; �� ¼ 0:5 eV; �0 ¼ 2:5 eV,
�1 ¼ 1:8 eV; t0 ¼ 2 eV, it1 ¼ 0:95 eV; and �so ¼
�0

so ¼ 0:1 eV. The corresponding data for thallium
appear in Fig. 2(f); the parameters are the same as for
indium, except for �1 ¼ 1:9 eV and �so ¼ �0

so ¼
0:31 eV. The good agreement with DFT provides strong
evidence that the underlying physics of the spin-orbit-
coupled system is well-captured by our tight-binding
model. With this result in hand, one can then demonstrate
the topological nature of the insulating regime by show-
ing that the Dirac-point gap remains nonzero upon adia-
batically deforming the Hamiltonian to the Kane-Mele
model. This can be achieved by defining a new
Hamiltonian Hð�Þ ¼ ð1� �ÞH4�4 þ �HKM that interpo-
lates between our adatom model at � ¼ 0 and the Kane-
Mele model at � ¼ 1. For either indium or thallium
parameters, the Dirac-point gap never closes as �
varies from 0 to 1 (see Appendix C for details). Thus
either element can indeed stabilize a robust QSH state in
graphene, at least when periodically arranged.

IV. RANDOMLY DISTRIBUTED ADATOMS

In an experiment, adatoms will likely occupy random
H-site locations in a graphene sheet that is of course not
pristine. It is therefore important to understand the impact
of such randomness and disorder on the stability of the
topological phase that was found above in pure graphene
with periodic adatoms. To address general features of
the problem in a way that reduces its computational com-
plexity, we will describe the disordered, random-adatom
system using the following graphene-only Hamiltonian,

H ¼ Ht þ
X
I

�HI �
X
r

��rc
y
r cr: (8)

Here ��r represents a random on-site potential arising,
e.g., from the substrate (and not from the adatoms). In the
second term, I labels the random plaquettes occupied by
adatoms and

�HI ¼ ���
X
r2I

cyr cr þ �so

X
hhrr0ii2I

ði�rr0c
y
r s

zcr0 þ H:c:Þ

þ i�R

X
r;r02I

cyr ðs� drr0 Þzcr0 ; (9)

with drr0 ¼ ðr� r0Þ=jr� r0j. The first term in �HI de-
scribes the chemical potential that screens charge from
the adatoms, while the last two terms capture the local
intrinsic (�so) and Rashba (�R) spin-orbit couplings in-
duced by electrons hopping from graphene to an adatom
and back, as discussed in Sec. II. Formally, these spin-orbit
terms can be derived by integrating out perturbatively the
adatom degrees of freedom in the Hamiltonian (5)–(7); see
Appendix D. It is important to notice that, unlike the
conventional nearest-neighbor Rashba term considered in
Ref. [6] for pristine graphene, the adatom-generated
Rashba term connects all sites in the hexagon. Such a
‘‘hexagon Rashba term’’ has the property of vanishing at
the Dirac points, as already argued in Sec. II. The adatom
also induces other symmetry-allowed terms, such as
further-neighbor spin-independent hoppings, which we
disregard because they either are weak or do not lead to
qualitative changes in the results reported below.
To study the robustness of the QSH phase in the pres-

ence of random adatoms and disorder, we probe for the
signature gapless edge states by simulating the classic two-
terminal conductance measurement in the geometry of
Fig. 4(a). Since ‘‘zig-zag’’ edges are known to support
gapless edge states (of a qualitatively different kind) even
in pristine graphene, to avoid complications we focus here
on graphene strips with ‘‘armchair’’ edges. We emphasize,
however, that the results reported below remain valid for
arbitrary edge configurations, as long as the bulk remains
in the topological phase. Within the Landauer-Büttiker
formalism [24,25], we employ the recursive Green’s func-
tion method [26] to evaluate the conductance G of a length
L, width W graphene strip as we vary the Fermi energy.
Consider first the simplest random-adatom setup with
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FIG. 3. Coverage effects. Spin-orbit-induced gap �so (circles)
opened at the Dirac points and Fermi level EF (squares) mea-
sured relative to the center of the gap for different indium and
thallium adatom coverages. The open and filled symbols repre-
sent data for indium and thallium, respectively.
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��r ¼ 0 (corresponding to an otherwise clean graphene
sheet), �� ¼ 0, and �R ¼ 0. Figure 4(b) illustrates the
conductance for this case at several adatom concentrations
ni and model parameters indicated in the caption. A 2e2=h
plateau with width proportional to ni clearly emerges,
strongly suggesting the onset of a bulk mobility gap and
quantized ballistic conduction by edge states. This picture
is corroborated by Fig. 4(c), which displays the current
distribution for EF ¼ 0:15 eV across a smaller system size
(chosen for clarity).

These results establish that, in principle, adatoms need
not be periodic to stabilize a QSH phase, although the
parameters employed were unrealistic. To make contact
with our DFT results, we also considered a system with
�so ¼ 0:02t and �� ¼ 0:1t, which would yield a similar-
bulk mobility gap to that seen in our thallium simulations if
the adatom coverages were the same. While finite-size
effects prevent us from studying the low-adatom coverages
considered in Sec. III, Fig. 4(d) shows that, for ni ¼ 0:15, a
robust conductance plateau indeed persists for these more

realistic parameter values. (At much lower coverages, the
width of the edge states approaches the system sizes we are
able to simulate.) We have also studied the effects of the
hexagon Rashba term and residual on-site potential disor-
der on the stability of the QSH phase (see Appendix E for
details). Even a relatively large �R � 2�so has a weak
effect on the width of the conductance plateau, as expected
given our analysis in Sec. II. With uncorrelated on-site
disorder ��r, the topological phase is also remarkably
robust—��r can fluctuate on the scale of t while degrad-
ing the plateau only marginally. The topological phase is
more sensitive, however, to correlated disorder which is
likely more relevant experimentally. In this case, the con-
ductance plateau survives only when ��r varies on a scale
smaller roughly than the mobility gap for the clean case.
For one to observe the QSH phase experimentally, the
chemical potential should therefore fluctuate on scales
smaller than the �10 meV gaps we predicted here.
While this might be difficult to achieve with graphene
on a standard SiO2 substrate, recent experiments using

FIG. 4. Transport. (a) Configuration used to determine the two-terminal conductance. Semi-infinite clean graphene leads are
connected to the sample, which has adatoms distributed randomly across it. The length L of the system is set by the number of
columns (indicated by dotted lines). The width W refers to the number of sites along either edge of the figure, corresponding to the
number of unit cells of an armchair nanoribbon required to create an individual column. (b) Conductance G as a function of the Fermi
energy EF, averaged over 40 independent random-adatom realizations at different concentrations ni ¼ 0:1, 0.2, 0.3 for a system of size
W ¼ 80 and L ¼ 40 with �so ¼ 0:1t. (c) Current distribution across a sample of size W ¼ 40 and L ¼ 20 at ni ¼ 0:2, �so ¼ 0:1t and
EF ¼ 0:15 eV. The magnitude of the current is represented by both the arrow size and color. (d) Conductance for the largest simulated
system size using realistic parameters for thallium adatoms (�so ¼ 0:02t and �� ¼ 0:1t) estimated from DFT data. Here W ¼ 200,
L ¼ 100, and the coverage is ni ¼ 0:15. In all panels we take t ¼ 2:7 eV.
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hexagonal boron nitride substrates [27] show disorder
energy scales as low as 15 K, which should be sufficient
to observe the QSH gap.

V. RELATION TO PREVIOUS WORK

Since numerous recent studies have explored the possi-
bility of employing adatoms to control graphene’s elec-
tronic properties, here we briefly comment on the
distinctions between our proposal and related earlier
works. Castro Neto and Guinea [21] previously argued
that graphene’s spin-orbit strength can be greatly enhanced
by adatom deposition, although the physical mechanism
and nature of induced spin-orbit coupling is quite different
from what we considered here. The enhancement discussed
in Ref. [21] stemmed from structural changes in the honey-
comb lattice induced by a T-position adatom (such as
hydrogen whose innate spin-orbit coupling is weak). We
explicitly neglected such contributions, as our DFT simu-
lations demonstrated that the adatoms we considered only
weakly affect the carbon-carbon bonds. Perhaps even more
important, the effect was discussed solely in the context of
enhanced Rashba spin-orbit interactions, which do not
stabilize a QSH state in graphene.

More recently, Abdelouahed et al. [22] examined the
influence of heavy Au adatoms on graphene’s electronic
structure using first-principles calculations. These authors
considered dense coverages, with 1 T-position adatom
residing above each carbon site on graphene’s A sublattice,
and found substantial enhancement of graphene’s Rashba
coupling to values of order 10 meV. Again, this type of
induced-spin-orbit coupling is not suitable for driving a
QSH state, and, in any case, this geometry is very likely
to produce only a topologically trivial band insulator
due to explicit breaking of sublattice symmetry by the
adatoms. (Lighter Ni adatoms were also studied but were
found to modify graphene’s spin-orbit coupling only very
weakly.)

Closest in spirit to our study is the very interesting work
of Qiao et al. [23], who considered the possibility that
adatoms can stabilize another topological phase in gra-
phene—a quantum anomalous Hall state. Unlike the
QSH phase, this state breaks time-reversal symmetry and
exhibits chiral edge modes leading to a nontrivial Hall
conductivity as in the integer quantum Hall effect. Thus
the requirements for stabilizing a quantum anomalous Hall
phase in graphene are quite different. Qiao et al. showed
that this can be accomplished by a combination of strong
Rashba spin-orbit coupling and an exchange-induced
Zeeman field. They further demonstrated via first-
principles calculations that 6.25% coverage of periodically
arranged iron adatoms (which form magnetic moments)
provide both ingredients and generate a quantum anoma-
lous Hall phase protected by a 5.5 meV gap. Note that,
while iron favors the H site in the same way that indium
and thallium do, its outer-shell electrons derive from d

rather than p orbitals. Thus our argument for the irrele-
vance of Rashba spin-orbit coupling at the Dirac points
does not apply to iron adatoms, consistent with the nu-
merical findings of Ref. [23]. Although the gap produced
by iron is smaller than that produced by indium and
especially thallium at the same coverage, a promising
feature of their proposal is that iron adatoms do not alter
the Fermi level.
We also wish to point out a connection of our work to

‘‘topological Anderson insulators’’—systems that are non-
topological in the clean limit but acquire nontrivial topol-
ogy when disordered. Such states were first predicted in
Ref. [28] and explored further in several subsequent studies
[29–32]. The robust QSH state that can emerge upon
randomly depositing dilute adatoms onto pure graphene
(which by itself is a nontopological semimetal) can be
viewed as an example of a topological Anderson insulator.
Note, however, that this categorization is somewhat loose,
as, in fact, this phase smoothly connects to the topological
phase of the pure Kane-Mele model [6], which has no
disorder (see also Ref. [32]). Nevertheless, this viewpoint
is useful in that it highlights the remarkable fact that
disorder, with suitable properties, can provide a practical
avenue to generating topological phases.

VI. DISCUSSION

In this paper we have demonstrated that dilute heavy
adatoms—indium and thallium, in particular—are capable
of stabilizing a robust QSH state in graphene, with a band
gap exceeding that of pure graphene by many orders of
magnitude. Aside from fabrication ease, another virtue gra-
phene possesses as a potential QSH system is the large
number of experimental probes available in this material.
Angle-resolved photoemission spectroscopy, for instance,
actually benefits from electron doping by the adatoms and
thus could be employed to detect the onset of theDirac-point
gap at arbitrary coverages. Scanning tunneling microscopy
would be similarly well-suited for probing the bulk gap, the
spatial structure of the LDOS around an adatom, and even
the topologically protected gapless edge modes.
Detecting the edge states via transport will be more

challenging, since this would require repositioning the
Fermi level inside of the bulk gap. Nevertheless, the tech-
nology for doping graphene by the requisite amount does
exist (see, e.g., Refs. [33–37]). Although the most com-
monly used ion-liquid techniques [33–35] work best near
room temperature, recently developed approaches employ-
ing ferroelectric substrates [36] and solid polymer electro-
lytes [37] show comparable results and remain applicable
down to cryogenic temperatures. The requisite doping
may also be achievable by introducing additional high-
electronegativity adatoms that absorb electrons. A quan-
tum spin-Hall phase in an appropriately doped graphene
sample can be detected through the classic two-terminal
conductance measurement akin to the historic observation
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performed in HgTe quantum wells [15]. A more complete
characterization of the topological phase can be obtained
through nonlocal edge state [38] and magnetotransport
measurements which provide unambiguous evidence for
topologically protected helical edge states [39,40].

Fulfilling Kane and Mele’s original vision by artificially
turning graphene into a strong spin-orbit system could have
remarkable technological implications. Among these, the
possibility of employing the protected edge states for real-
izing topological superconductivity, Majorana fermions,
and related phenomena such as non-Abelian statistics and
‘‘fractional Josephson effects’’ are particularly tantalizing
[4]. Interestingly, one of the primary requirements for
observing these phenomena—generating a superconduct-
ing proximity effect in graphene—has already been
achieved by numerous groups [41–44]. These exciting
possibilities, along with potential spintronics and low-
dissipation devices, provide strong motivation for pursuing
the line of attack we have introduced for stabilizing a
robust QSH state in graphene.
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APPENDIX A: DISCUSSION OF THE EFFECTIVE
HAMILTONIAN FOR GRAPHENE WITH A

SINGLE ADATOM

In this section, we will consider a sheet of graphene
located in the ðx; yÞ plane, with a single adatom sitting at
the H position (recall Fig. 1). An important feature of such
an adatom is the high symmetry that it preserves compared
to the cases where the adatom resides at the B or T
positions. In particular, the following symmetries remain
here: �=3 rotation (R�=3) and x reflection (Rx) about the

adatom site, as well as time reversal (T ). Note that, since
the adatom is displaced vertically out of the ðx; yÞ plane,
mirror symmetry with respect to the graphene plane (Rz) is
broken. It will nevertheless be useful below to understand
how operators transform under Rz, since this will give us
insight into which couplings mediate intrinsic versus
Rashba spin-orbit coupling.

We will continue to assume that p orbitals form the
active states for the adatom. Also as in the main text, we

employ operators dym�, which add electrons with spin �,
and orbital angular momentum quantum number m ¼ 0,

�1 to the adatom, and operators cyr�, which add electrons
with spin � to site r of graphene’s honeycomb lattice.
These operators transform under R�=3 according to

R�=3: cr ! eið�=6Þszcr0 ; (A1)

R�=3: dm ! eið�=6Þszeiðm�=3Þdm; (A2)

where r0 corresponds to r rotated by �=3. Note that, here
and below, both cr and dm are considered to be two-
component objects, with the upper and lower components
corresponding to spin up and down, respectively. Similarly,
under Rx, we have

Rx: cðx;yÞ ! eið�=2Þsxcð�x;yÞ; (A3)

Rx: dm ! eið�=2Þsxd�m: (A4)

Time reversal, which is antiunitary, sends

T : cr ! eið�=2Þsycr; (A5)

T : dm ! ð�1Þmeið�=2Þsyd�m: (A6)

Note that the ð�1Þm factor above arises because one con-
ventionally defines spherical harmonics such that ½Ym

‘ �� ¼ð�1ÞmY�m
‘ . Finally, the operators transform under Rz as

Rz: cr ! �eið�=2Þszcr; (A7)

Rz: dm ! ð�1Þ1�meið�=2Þszdm: (A8)

In the last equation, the factor of ð�1Þ1�m reflects proper-
ties of spherical harmonics under z ! �z.
Our aim now is to construct a minimal tight-binding

model for graphene with a single H-position adatom. As in
Sec. II, we write the Hamiltonian as H ¼ Hg þHa þHc,

whereHg involves only the carbon degrees of freedom,Ha

involves only the adatom degrees of freedom, and Hc

couples the two. Consider first Ha. The most general
quadratic form for the adatom Hamiltonian can be written

Ha ¼
X

�¼0;x;y;z

X1
m;m0¼�1

u�m;m0d
y
ms�dm0 ; (A9)

where s0 is the identity, sx;y;z are Pauli matrices, and
u�m;m0 ¼ ½u�m0;m�� due to Hermicity. Using the transforma-

tion rules obtained above, one can show that symmetry
strongly constrains the allowed u�m;m0 terms. For example,

in the � ¼ 0 sector, R�=3 implies that u0
m;m0 must vanish

except when m ¼ m0, while Rx further requires that
u0m;m ¼ u0�m;�m. (Time reversal constrains these couplings

no further.) The � ¼ x, y, z terms can be similarly con-
strained, leading to the expression

Ha ¼
X

m¼0;�1

�jmjd
y
mdm þ�soðdy1 szd1 � dy�1s

zd�1Þ

þ ffiffiffi
2

p
�0

soðdy0 s�d�1 þ dy0 s
þd1 þ H:c:Þ (A10)

of Eq. (6).
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Let us elaborate on the physics here in greater detail. If
the adatom were in isolation, continuous rotation symme-
try would further restrict �jmj to be independent of m and

require that �0
so ¼ �so. In this case, the �so, �

0
so terms

above simply encode an isotropic L � S spin-orbit interac-
tion that split the orbitals into a lower j ¼ 1=2 doublet and
a j ¼ 3=2 quadruplet that is higher in energy by 3�so.
Crystal-field effects arising from the graphene environ-
ment lead to m-dependence of �jmj and allow �0

so to differ

from �so. Note also that we have assumed that the ada-
tom’s s orbitals (and all other inner levels) are far in energy
from the Dirac points and can be safely neglected. This is
indeed justified by our supercell DFT calculations for both
indium and thallium, where the 5s and 6s electrons con-
tribute significantly to the density of states only at several
eV below the Dirac points. We have further ignored four-
fermion interaction terms in Ha. This, too, is justified for
indium and thallium, since both elements donate their
outer p electron to graphene and form nonmagnetic con-
figurations. In a perturbative tight-binding picture, elec-
trons hopping onto the adatom from graphene therefore
lead to a singly occupied p orbital, for which Coulomb
repulsion is expected to be unimportant. Finally, we note
thatHa is even under Rz symmetry even though we did not
enforce this. In other words, the fact that the adatom is
displaced away from the graphene sheet leads to no addi-
tional terms in the Hamiltonian Ha compared to the (ficti-
tious) case for an H-position adatom residing directly in the
ðx; yÞ plane. This fact is crucial for the irrelevance of
induced Rashba terms for graphene, as we discuss further
below.

For the graphene-only part of the Hamiltonian, we posit
that the usual nearest-neighbor hopping model Ht is modi-
fied primarily through a change in chemical potential for
the six sites adjacent to the adatom:

Hg ¼ Ht � ��
X6
j¼1

cyrjcrj : (A11)

ClearlyHg is invariant under not only R�=3, Rx, andT , but

also under Rz, despite this symmetry’s being broken by the
adatom. (Terms that violate Rz necessarily involve spin-
orbit coupling, which we have justifiably neglected be-
cause it is exceedingly weak.)

Since the adatom generically modifies the bond lengths
between carbon atoms in its vicinity, the hopping ampli-
tudes will be modulated as well near the adatom.
According to our DFT calculations, however, perturbations
to graphene’s lattice structure are quite small. (The carbon
bond lengths in the immediate vicinity of either indium or
thallium change by less than 1%.) We thus expect this
effect to be minor and have neglected it for simplicity.
We have also neglected in Hg any spin-orbit terms that

directly couple the carbon atoms, which are orders of
magnitude weaker than the spin-orbit interaction indirectly
mediated by the adatom.

In contrast, the induced chemical potential �� is not a
weak effect—we find that our tight-binding simulations
best reproduce the DFT band structure when �� is on the
order of 1 eV. Physically, �� appears because the indium
or thallium adatoms donate their outer p-orbital electron to
the graphene sheet, leaving behind a net positive charge.
Electrons in the graphene sheet thus prefer to conglomerate
in its vicinity in order to screen the positively charged
adatom. We note that, of course, there is no fundamental
reason why the induced chemical potential should be con-
fined only to the six sites nearest to the adatom. Our DFT
simulations demonstrate, however, that the induced charge
modulation occurs very locally around the adatom, so that
this is expected to be a good approximation. As an illus-
tration, consider the geometry with one thallium adatom
in a 4� 4 supercell. Figure 5 displays the induced charge
density �� 	 �ðgraphene+thalliumÞ � �ðgrapheneÞ �
�ðthalliumÞ relative to the charge densities obtained
when graphene and thallium decouple completely. Here,
the yellow and blue regions correspond to isosurfaces

with �� ¼ �0:01 eV= �A3. Clearly, the charge modulation
occurs predominantly within the first two ‘‘rings’’ of
carbon sites surrounding the adatom.
Finally, let us discuss the Hamiltonian Hc that allows

electrons to tunnel between the adatom and the graphene
sheet. For simplicity, we allow only for tunneling events

FIG. 5. Adatom-induced charge modulation. (a) Top and
(b) side views of the charge density induced by a thallium
adatom in a 4� 4 supercell. Yellow (blue) surfaces correspond
to a positive (negative) induced charge density (relative to the
case where graphene and thallium decouple completely). The
charge modulations relax rather rapidly away from the adatom
and occur mostly within the two innermost ‘‘rings’’ of carbon
sites near the adatom.
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that couple the adatom to its six nearest carbon atoms, and
we assume (because of carbon’s weak intrinsic spin-orbit
coupling) that such processes are spin-independent. As in
Eq. (3), it is useful to introduce linear combinations

Cm� ¼ 1ffiffiffi
6

p X6
j¼1

e�ið�=3Þmðj�1Þcrj� (A12)

that, like dm�, carry angular-momentum quantum number
m under R�=3. It follows from the symmetry-

transformation rules for cr obtained above that Cm� trans-
forms as follows:

R�=3: Cm ! eið�=6Þszeið�=3ÞmCm; (A13)

Rx: Cm ! eið�=2ÞsxC�m; (A14)

T : Cm ! eið�=2ÞsyC�m; (A15)

Rz: Cm ! �eið�=2ÞszCm: (A16)

Using the first three symmetries along with the correspond-
ing transformation rules for dm, it is straightforward to
show that the spin-independent hoppings of interest must
take the form

Hc ¼ � X
m¼0;�1

ðtjmjC
y
mdm þ H:c:Þ; (A17)

with t0 real and t1 pure imaginary. Under Rz symmetry, the
t0 hopping is even, while the t1 hopping terms are odd. This
is easy to understand physically by considering the ficti-
tious case where the adatom resides exactly in the graphene
plane so that Rz symmetry is present. In this case, the t1
terms reflect hopping between the adatom’s px;y orbitals

and the carbon pz orbitals, which are orthogonal in this
pathological limit. That is, tunneling between graphene’s
pz orbitals and the adatom’s m ¼ �1 orbitals arises only
when Rz is lifted. In contrast, the adatom’s pz orbitals
overlap nontrivially with carbon’s, even when Rz is
preserved.

Remarkably, the only terms in H that do not respect Rz

are precisely these t1 couplings. To see what kind of spin-
orbit processes the adatom can mediate, let us now con-
sider the coupling between graphene and the adatom from
a perturbative perspective. An electron from the graphene
sheet can tunnel onto the adatom via either t0 or t1.
Because of the adatom’s strong spin-orbit coupling, the
electron need not return to the graphene sheet via the same
tunneling process by which it arrived. For example, an
electron can tunnel via the t0 hopping, flip its spin, and
then return to the graphene sheet via t1. Consequently, at
second order in perturbation theory, the adatom will me-
diate effective couplings between the carbon atoms that are
proportional to t20, t21, and t0t1. The electron’s Sz spin

component is conserved in the former two cases, but not
in the third. Furthermore, since the t0 coupling in Hc is

even under Rz while the t1 coupling is odd, it is only the
induced terms for graphene proportional to t0t1 that violate
Rz. It follows that such spin-flip processes mediate Rashba
spin-orbit coupling, while the t21 events mediate intrinsic
spin-orbit interactions. (The t20 processes do not generate

spin-orbit coupling.) It is worth noting as an aside that our
ability to classify such processes in this simple way relies
on the fact that all terms inHa are even under Rz. IfHa also
involved terms that violated Rz, then any second-order
tunneling event would generically be capable of mediating
Rashba spin-orbit coupling.
As discussed in the main text, to generate a QSH state in

graphene, the physics near the Dirac points must be domi-
nated by intrinsic rather than Rashba spin-orbit interac-
tions. An important feature of our proposal is that Rashba
coupling mediated by an adatom with a partially filled p
shell is always subdominant to the induced intrinsic spin-
orbit terms. This follows because electrons with momen-
tum near the Dirac points hop very ineffectively onto the
adatom’s m ¼ 0 orbital. Previously we discussed how this
effect arises because electrons destructively interfere when
tunneling onto this orbital. Here we provide a complemen-
tary perspective, using the language of low-energy contin-
uum Dirac fields. Focusing on physics near the Dirac
points, one can express the lattice fermion operators for
the A and B sublattices of graphene as follows:

cr2A;� � eiQ�rc R;A� þ e�iQ�rc L;A�; (A18)

cr2B;� � eiQ�rc R;B� þ e�iQ�rc L;B�: (A19)

Here, c R=L� are slowly varying, two-component fields that

describe low-energy excitations in the vicinity of the Dirac
points at momenta �Q ¼ � 4�

3
ffiffi
3

p
a
x̂. (a is the separation

between neighboring carbon atoms.) Let us use this de-
composition to rewrite the operator Cm¼0 that appears in
the t0 tunneling. Neglecting pieces involving derivatives of
c R=L�, we obtain

Cm¼0� 1ffiffiffi
6

p ½ðeiQ�r2 þeiQ�r4 þeiQ�r6Þc R;AþðeiQ�r1 þeiQ�r3

þeiQ�r5Þc R;Bþðe�iQ�r2 þe�iQ�r4 þe�iQ�r6Þc L;A

þðe�iQ�r1 þe�iQ�r3 þe�iQ�r5Þc L;B�: (A20)

Remarkably, all terms in parentheses above vanish identi-
cally. The leading terms in the low-energy expansion of
Cm¼0 thus involve derivatives and become, consequently,
increasingly unimportant as one approaches the Dirac
points.
This implies that the Rashba coupling mediated by the

adatom—which necessarily involves tunneling via t0—is
highly ineffective at influencing the physics at the Dirac
points. In contrast, Cm¼�1 admits a nontrivial expansion in
terms of c R=L� even when terms involving derivatives are

dropped. It follows that electrons with momenta near the
Dirac points can effectively tunnel onto and off the adatom
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via t1, and the intrinsic spin-orbit coupling mediated by
these hoppings thus always dominates over the induced
Rashba terms. As noted in the main text, this is not neces-
sarily the case for adatoms with partially filled d or f
shells, because there are then additional orbitals onto
which electrons from graphene can tunnel. For instance,
here, electrons can tunnel onto the adatom’s m ¼ �2
orbitals via a tunneling t2; such processes, unlike t0 tun-
neling, are not suppressed at the Dirac points. Effective
couplings between carbon atoms proportional to t1t2 are
odd under Rz, involve spin flips, and correspond to Rashba
spin-orbit interactions that may significantly affect the
low-energy physics at the Dirac points. The importance
of such terms compared to the induced intrinsic spin-orbit
interactions then depends on details of the Hamiltonian. If,
say, the additional orbitals hybridize very weakly with
graphene or reside far in energy from the Dirac points
due to crystal-field effects, then d- or f-shell adatoms
may still be suitable for stabilizing a QSH state in
graphene.

APPENDIX B: DENSITY FUNCTIONAL THEORY

All DFT calculations were carried out with the Vienna
ab-initio simulation package (VASP) [45,46], at the level of
the generalized-gradient approximation (GGA) [47]. We
used the projector augmented wave method for the descrip-
tion of the core-valence interaction [48,49]. A vacuum
space of 15 Å was employed in all calculations, along
with a 15� 15k-grid mesh [50] for integrals in the two-
dimensional Brillouin zone. The energy cutoff of the plane
wave expansion was set to 500 eV.

For pure graphene, the optimized lattice constant is
2.468 Å, consistent with the experimental value of
2.46 Å. When addressing the preferred location (H, B, or
T) of different elements on graphene, a 4� 4 supercell was
employed with one adatom per cell. Recall that we have
two minimal criteria for stabilizing a QSH state in gra-
phene: the adatoms should (i) prefer to occupy the
H position and (ii) not form a net spin moment. Among
the elements we searched in this work, In, I, La, Hf, Au, Hg
and Tl satisfy the first criterion, while the remaining ele-
ments prefer either the T or B site. However, I, La, Hf and
Au form magnetic moments and thus fail the second cri-
terion, while the s and d bands of Hg reside far below
graphene’s Fermi level, implying a negligible interaction
between the two. The only two remaining elements—
indium and thallium—satisfy both criteria and enter the
H site nonmagnetically.

Including spin-orbit coupling, the binding energies
[Eb ¼Eðadatom+grapheneÞ�EðgrapheneÞ�EðatomÞ] of
indium and thallium on graphene at the H site are
�0:525 and �0:133 eV, respectively. The total energy
per site when indium resides at the T and B sites is higher
by 87 and 80 meV, respectively, than when indium resides
at the H site. This is qualitatively consistent with the results

of Ref. [20], where spin-orbit coupling was neglected. The
conclusion is the same for thallium, although the prefer-
ence for the H position is weaker; here, the Tand B sites are
higher in energy by 32 and 22 meV. At low temperatures
compared to these energy differences, indium and thallium
are expected to occupy only the H position, with indium-
carbon and thallium-carbon bond lengths of 2.83 and
2.90 Å, respectively, as determined by GGA calculations.
We also calculated the atomic structures of indium and
thallium on graphene within the local density approxima-
tion. The indium-carbon and thallium-carbon bonds are
shortened by only 0.09 and 0.06 Å, respectively, compared
with the GGA results. It is thus reasonable to conclude that
both GGA and the local density approximation can de-
scribe the structural and electronic properties well.

APPENDIX C: ADIABATIC CONTINUITY OF THE
ADATOM AND KANE-MELE MODELS

We now turn to a periodic system with one indium or
thallium adatom in a 4� 4 supercell. This problem was
explored extensively in the main text using both DFT and
tight-binding simulations. Our first-principles calculations
demonstrated that, with either element, the Dirac points
remain massless in the nonrelativistic limit but acquire a
substantial gap upon including spin-orbit coupling. We
further showed that the band structure and local density
of states at the adatom site could be well-accounted for by
an effective tight-binding model H4�4. This model in-
cluded first-, second-, and third-neighbor hopping amongst
carbon atoms in the graphene sheet, as well as the addi-
tional couplings discussed in Sec. II around each adatom.
Note that inclusion of these further-neighbor tunnelings is
necessary for obtaining reasonable quantitative agreement
with first-principles band structure at energies away from
the Dirac points, even for pure graphene [51]. Since the
adatoms’ local density of states is concentrated at energies
greater than 1 eV above the Dirac points (see Fig. 2), one
needs these additional hoppings to accurately model their
hybridization with the graphene bands. (We stress that this
is important for a quantitative description only. None of the
qualitative features discussed in this paper depends on
these fine details. For instance, with only nearest-neighbor
hopping, a gap still opens at the Dirac points, although the
local density of states for the adatoms’ pz states is difficult
to accurately fit in this case.)
One advantage of this effective tight-binding model is

that it enables one to readily verify that the insulating
regime generated by the spin-orbit-induced gap indeed
corresponds to a QSH state. This can perhaps be most easily
proven by demonstrating that H4�4 and the Kane-Mele
model HKM [see Eqs. (1) and (2)] can be smoothly de-
formed into one another without closing the Dirac-point
gap. To this end, consider the Hamiltonian Hð�Þ¼
ð1��ÞH4�4þ�HKM, introduced in Sec. III, that interpo-
lates between these models as � varies from 0 to 1. ForHKM
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(which includes only nearest-neighbor hopping and uni-
form intrinsic spin-orbit coupling for graphene), we choose
t ¼ 2:7 eV and �so ¼ �0:0015 eV. As Fig. 6 illustrates,
the Dirac-point gap computed for Hð�Þ indeed remains
finite for all � between 0 to 1 with either indium (solid
blue line) or thallium (dashed red line) parameters input
into H4�4. The QSH state known to be supported by HKM

and the insulating state stabilized by either type of adatom
are, consequently, the same topological phase of matter.

APPENDIX D: GRAPHENE-ONLY
EFFECTIVE HAMILTONIAN

In this section, we outline the derivation of the graphene-
only Hamiltonian, Eqs. (8) and (9), from the tight-binding
model in Eqs. (4)–(7) describing the graphene sheet with
H-position adatoms. We assume, for the purposes of this
section only, that one adatom resides at each hexagonal
plaquette but disallow any direct hopping of electrons
between adatom p orbitals. Under these assumptions we
may exploit the translation symmetry of the problem and
write the Hamiltonian (4) in momentum space as

H ¼ X
k

c y
kH kc k

with c k ¼ ðcAk; cBk; d1k; d0k; d�1kÞT , where cA=Bk remove
electrons from the A/B graphene sublattices while dmk

remove electrons from the adatom orbitals. As before,
spin is treated implicitly. The Hamiltonian matrix in this
basis reads

H k ¼ hg T

Ty ha

� �
; (D1)

where

hg ¼ 0 	k
	�k 0

� �
; 	k ¼ �t

X2
j¼0

eik��j (D2)

is the standard nearest-neighbor tight-binding Hamiltonian

for graphene with �j ¼ ðsin2�j3 ;� cos2�j3 Þ unit vectors

pointing from a site on sublattice A to its three neighbors
on the B sublattice. Also,

ha ¼
�1 þ�sos

z
ffiffiffi
2

p
�0

sos
� 0ffiffiffi

2
p

�0
sos

þ �0
ffiffiffi
2

p
�0

sos
�

0
ffiffiffi
2

p
�0

sos
þ �1 ��sos

z

0
BB@

1
CCA (D3)

describes the adatom p orbitals. Finally,

T¼ V1 V0 V�1

V�
�1 V�

0 V�
1

 !
; Vm¼ tjmj

X2
j¼0

eið2�j=3Þme�ik��j (D4)

represent transitions between graphene and the adatom
orbitals as described by Hc in Eq. (7).
We now wish to ‘‘integrate out’’ the adatom degrees of

freedom and thus determine their effect on the electrons in
graphene. The simplest way to accomplish this goal is to

first perform a unitary transformation H ! ~H ¼
e�SH eS, with S chosen such that ~hg and ~ha in the trans-

formed Hamiltonian are decoupled, i.e., ~T ¼ 0. In this
basis, the adatom degrees of freedom can be integrated
out trivially. Following the steps outlined in Ref. [9], we
find, to second order in T,

~hg¼hg�1

2
½Th�1

a TyþhgTh
�2
a TyþH:c:�þOðT4Þ: (D5)

This result is equivalent to treating Hamiltonian (D1)
perturbatively to second order in T.
We are interested in the effect of adatoms on the low-

energy fermonic modes in graphene occurring in the vi-
cinity of the Dirac points �Q. In this limit, clearly, the
second term in the brackets becomes negligible (since hg
vanishes as k ! �Q), so we therefore focus on the first
term. Although it is possible to find an exact inverse of ha,
the result is cumbersome and tends to obscure the simple
physics underlying the formation of the spin-orbit-induced
gap in the system. To avoid this complication, we make an
additional assumption that spin-orbit splitting of the ad-
atom orbitals is small compared to the crystal-field effects,
j�soj, j�0

soj 
 j�mj, and write ha ¼ h0 þ h1 with h0 ¼
diagð�1; �0; �1Þ. To first order in �so and �0

so we then
have h�1

a ’ h�1
0 � h�1

0 h1h
�1
0 and

~h g ’ hg � Th�1
0 Ty þ Th�1

0 h1h
�1
0 Ty: (D6)

The adatom-induced correction to hg is seen to have a

simple structure. The first term is spin-independent and
mediates on-site potential terms and hoppings between
sites in the hexagon surrounding an adatom. The second,
spin-dependent term in turn produces the intrinsic and
Rashba spin-orbit couplings.
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FIG. 6. Adiabatic continuity. Energy gap at the Dirac point as
the Hamiltonian adiabatically deforms from the periodic adatom
Hamiltonian H4�4 at � ¼ 0 to the Kane-Mele model at � ¼ 1.
The solid blue and dashed red lines correspond to H4�4 eval-
uated with parameters appropriate for indium and thallium,
respectively. In both cases, the gap remains finite as � varies
from 0 to 1, indicating that the Kane-Mele model and adatom
Hamiltonian are adiabatically connected and thus support the
same quantum spin-Hall phase.
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Various terms resulting from Eq. (D6) can be explicitly
worked out in a somewhat tedious but straightforward
calculation. The spin-orbit terms take the form

�hSOCg ¼ R1 þD R2

Ry
2 R1 �D

 !
; (D7)

with

D ¼ �so

jt1j2ffiffiffi
3

p
�21

sz
X2
j¼0

sink � ð�j � �jþ1Þ (D8)

and

R1 ¼ �0
so

ffiffiffi
2

p
t0jt1j

3�0�1

X
j;l

½s� ð�l � �jÞ�z sink � ð�j � �lÞ;

R2 ¼ �i�0
so

ffiffiffi
2

p
t0jt1j

3�0�1

X
j;l

½s� ð�l þ �jÞ�ze�ik�ð�jþ�lÞ:

If we now recall that �0 þ �1 þ �2 ¼ 0 and identify

�so ¼ �so

jt1j2
2
ffiffiffi
3

p
�21

; �R ¼ �0
so

ffiffiffi
2

p
t0jt1j

3�0�1
; (D9)

we see that D and R1;2 correspond, respectively, to the

intrinsic and hexagon Rashba spin-orbit couplings in
Eq. (9). One can readily verify that R1;2 vanish at k ¼
�Q while D approaches a nonzero value of 3

ffiffiffi
3

p
�so, as

expected on the basis of the arguments presented above.
Using the tight-binding parameters obtained in Sec. III,

we may estimate �so ’ 23 meV and �R ¼ 58 meV for
thallium. (For indium, both are about a factor of 3 smaller.)
At 6% coverage, assuming uniform averaging of �so over
all plaquettes, this would imply a spin-orbit-induced gap of

0:06� 6
ffiffiffi
3

p
�so ’ 14 meV, somewhat smaller that the

21 meV gap predicted by DFT at the same coverage. We
attribute this discrepancy to the neglect of higher-order
terms in Eq. (D6); since t0;1 are of similar magnitude

as �0;1, this expansion cannot be expected to yield quanti-

tatively accurate values of the coupling constants.

Nevertheless, the procedure outlined above is useful in
that it illustrates how various symmetry-allowed spin-orbit
terms emerge in the effective graphene-only model. It also
confirms that, although the Rashba coupling exceeds the
intrinsic coupling by more than a factor of 2, its special
form, dictated by symmetry, forces it to vanish at the Dirac
point and renders �R irrelevant for the low-energy physics.
Using the same methods, one can also estimate various

spin-independent terms induced by the adatoms. These
include the on-site potential and additional hopping terms
mentioned above. Since the latter are already present in
pristine graphene and since adatom corrections are gener-
ally small compared to these bare values, we expect their
effect on the low-energy physics to be minimal and do not
discuss them further.

APPENDIX E: HEXAGONAL RASHBA AND
DISORDER EFFECTS

As mentioned in Sec. VI, the stability of the QSH phase
was also tested against the addition of hexagonal Rashba
coupling and residual disorder in the graphene sheet. We
now discuss these results in greater detail. Throughout this
appendix, we will consider random-adatom arrangements
at coverage ni ¼ 0:2, modeled using the graphene-only
Hamiltonian from Eq. (8) with �� ¼ 0 for simplicity.
We first consider the influence of the hexagon Rashba
term defined in Eq. (9). While it is true that its effects
identically vanish at the Dirac points, it nevertheless causes
some splitting of the bands in their vicinity. As a result,
these Rashba terms can reduce somewhat the size of the
mobility gap observed with either periodic or random
adatoms, although to a far lesser extent than the traditional
Rashba coupling. The splitting will depend on the ratio of
�so to �R, and, more importantly, the absolute strength of
�R compared to t.
In Fig. 7(a), we show the result for a set of parameters

chosen to illustrate this effect while avoiding the compli-

FIG. 7. Hexagonal Rashba effect and substrate-induced disorder. Conductance G as a function of the Fermi energy EF for a system
including (a) hexagonal Rashba coupling, (b) uncorrelated disorder randomly distributed over the range ½��;��, and (c) correlated
disorder as defined in Eq. (E1) with � ¼ 0:07 and d ¼ 5. In all cases, the system is of sizeW ¼ 80 and L ¼ 40 with adatom coverage
ni ¼ 0:2 and nearest-neighbor hopping strength t ¼ 2:7 eV. For panel (a), the intrinsic spin-orbit strength is �so ¼ 0:04t; for panels (b)
and (c), �so ¼ 0:1t.
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cations due to the finite size of the system. Here, �so ¼
0:04t and �R ¼ 0:08t, their ratio chosen to be similar to
that estimated in Eq. (D9). The mobility gap has clearly
been somewhat reduced, but a robust plateau remains. We
remark that the standard Rashba term (with only nearest-
neighbor coupling) at the same coupling strength would
completely destroy the plateau. For smaller values of �R

and �so (but keeping their ratio constant), the effect of
hexagonal Rashba coupling becomes even less pro-
nounced, although the finite-size effects prevent us from
obtaining reliable results at low-adatom coverage in this
regime. It is also worth emphasizing that one should not
view �R as reducing the gap compared to those found in
our DFT and tight-binding results displayed in Fig. 2.
Those simulations incorporated the intrinsic and the hexa-
gon Rashba spin-orbit couplings (among other couplings
neglected for simplicity here), so the results already reflect
the influence of both types of spin-orbit interactions.

To study residual disorder unrelated to the adatoms (e.g.,
arising from impurities in the substrate), two models were
used, both of which can be captured by an on-site potential
term of the form specified in Eq. (8). In the first model, we
incorporate an uncorrelated random chemical potential in
the range ½��;�� on every lattice site. In the second, we
employ a longer-range, correlated disorder potential of the
form [52]

��ri ¼
XNimp

j¼1

Vj exp

�
�jri � rjj2

2d2

�
; (E1)

where Nimp is the number of impurity sites, Vj is also

uniformly random over the range ½��;��, and d is the
radius of the impurity potential. As in Ref. [52], we char-
acterize Nimp by the ratio � ¼ Nimp=N, with N being the

total number of carbon atoms in the sample.
While we have not averaged over multiple disorder

realizations as in Fig. 4(b), with only a single disorder
realization, one can still see the general trend toward
instability of the QSH phase as � increases. Our simula-
tions show that this state, despite already being stabilized
by a disordered arrangement of adatoms, in fact exhibits
remarkable resilience against additional uncorrelated
substrate-induced disorder in the graphene sheet. As
Fig. 7(b) illustrates, in this case, a very high value of
� � t can be applied before the first signs of disorder
affecting the topological phase appear, and even here a
considerable conductance plateau survives. The topologi-
cal phase is, however, more sensitive to long-range corre-
lated disorder, which is likely more relevant for experiment
when charged impurities from the substrate present the
main disordering mechanism. Figure 7(c) illustrates that,
here, the deterioration of the plateau is more rapid. At � ¼
0:2t � 0:54 eV, with � ¼ 0:07 and d ¼ 5, there is still a
remnant of the gapless edge states, but, for stronger dis-
order, the topological phase is destroyed. Notice that this

value of � is comparable to the width of the plateau in the
‘‘clean’’ case, where the only disorder source is the ran-
domly distributed adatoms.
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