Millikan Oil Drop Data Analysis:

The experiment consists of raising a tiny, electrically charged oil drop in an electric field and then
lowering it again. To raise it you apply a constant electric field on the drop that forces it upward.
To lower the drop you can either turn off the electric field and just let it fall or you can reverse the
field and force it downward. Because of air drag forces on the oil drop, the drop very quickly
reaches its terminal velocity and moves with a constant velocity. Hence the total force on the oil
drop is exactly zero while you observe it. Generally you raise and lower the drop over a fixed dis-

tance, d, and measure the rise and fall times, t, and t, respectively. You need to know the electric

field as well. This is just the voltage on the capacitor plates, V, divided by the distance between
them, D. The raw data in the measurement consists of the 5 quantities, d, t,, t;, V and D. Gener-

ally you establish and measure d and D once and for all at the beginning of the experiment. (D is
set by the apparatus. The last time | measured it was (3.01 +0.03) mm.) V is established and
recorded for each drop and the same voltage (except for the sign) is used to raise and lower the
drop if you choose to force it down. The two t’s should be measured many times for each drop; 12
isn’t overdoing it. Minimizing random errors and keeping track of them is one of the two most
important ingredients of a successful oil drop experiment. If you make N measurements of one of
the t’s, the best estimate of t will just be the mean (or average) of those measurements. The uncer-

tainty in t will be the standard deviation of the N measurements divided by ./N . You want to
make N large to get a good estimated of the standard deviation of the measurements and to drive
the uncertainty of the mean down. The other important ingredient of a successful experiment is
the selection of really small drops because they tend to have the fewest number of charges on
them. If drops have 1, 2 or just a few charges on them, a 10% precision in the charge measurement
will show you charge quantization. To see the difference between 100 and 101 charges, you have
to measure the charge to a few parts in 1000, a much harder task.

Below the classical mechanics needed to extract the charge on each drop from the raw data is pre-
sented. Finally, a few comments to get you started thinking about how to go from the charges to e
and charge quantization are offered.

The following table contains the symbols we’ll use.

Table 1: Symbols Used in Data Analysis

Symbol Definition Comment
d Rise/Fall Distance
D Plate spacing (3.01£0.03) mm.
t, Rise time
te Fall time Free-fall or forced down by field; your choice.
Y, \oltage across plates




Table 1: Symbols Used in Data Analysis

Symbol Definition Comment

v, Rise velocity v, = d/t,

Ve Fall velocity ve = d/t;

E Electric field in capacitor E =V/D

p Mass density of the oil Measure it. It’s a little less than 1 g/cm®.

o Mass density of air Calculate it from what you know about air. (It’s
small enough that high precision is not important
here.)

o' p—o Including o takes care of “buoyancy forces.”

o Viscosity of air Itis a function of the temperature of the room. See

upcoming discussion.

n Viscosity of air corrected | This matters for the size drops you will use. See
for mean free path effects | the discussion below.

a Radius of oil drop

P Atmospheric pressure

T Temperature of the room We’ll use C (degrees Celsius).

b Constant used in calculat- | See up coming discussion.
ing n from . b= 5.908x10"° torr-cm

q The charge on the drop

Equations of Motion of the Drops

The data analysis is based on applying E = ma to the rising and falling drops. We will take “up”
as the positive direction. When the drop is rising in the field

ma =0 = qE—%np'asg—Gnnavr )

In (1) the left side is zero because the drop is moving at its constant terminal velocity; gE is the
upward force on it; the next term is the drop’s weight pulling it downward corrected for the buoy-
ancy of the air, and the last term is the viscous air drag on the drop. The last term is called Stokes’
law. It is the drag force on a sphere of radius a moving through a fluid of viscosity n . and is
appropriate for small drops at low velocities so that the air flow around the drop is laminar and



therefore not turbulent. If the drop is moving up, the drag on it is downward and therefore comes
in with a - sign in (1).

If you just let the drop fall, its equation of motion will be

= - gnp'agg +6nnavy (2)

Finally, if you reverse the polarity instead of turning it off and let gE help gravity pull the drop
down, the equation of motion is

= —qE—gnp'asg +6nnav; ©)

If you look at (1) long enough, you will discover that after you take the measurements and figure
out v, and E, there are two unknowns in it, a and g. At this point there are two options depending

on whether you let the drop free fall in zero field or forced the drop down by reversing polarity on
the plates.

Solving the Equations of Motion for g

Option 1: Free Fall

If you measured the fall time in zero field you can solve (2) for a. The result is
1
2
a = (1) (4)
2p'g

Now we can solve (1). Use (2) in (1) to eliminate the mg term (second on the right) and then sub-

stitute the right side of (4) for a. The result is
1

= 3
6nD( VN2 3
0 = 2P (5 v ©)

The D and V in (5) come from writing E in terms of the plate voltage and separation.



Option 2: Reversing Polarity

In this case you can add (1) and (3) to get

gnp'a3g = 6mma(vi-Vv,) . (6)

Notice that v; will always be bigger than v, so there can not be sign problems. (6) is solved for a;

1
IN(ve—V )2
a:(n( d r)) | (7)
4p'g
Now you can subtract (3) from (1) to get
2qE = 6rna(vi+Vv,) . 8
Then substitute (7) into (8)
1
_ 3nD IVi—V N2 3
= (T e ©

Two comments are worth making. First, you must remember that the v in the free-fall case (Egs.

(2), (4) and (5)) is not the same thing as v; in the case where the field is reversed to help force the

drop downward (Egs. (3), (6), (7), (8) and (9)). The fall velocities when the field helps pull the
drop down must be bigger than the free-fall velocity. Furthermore, a little thought about the forces

involved will (should) convince you that in the free fall case v; is proportional to the weight of
the drop and that in the field forced drop case (v;—V,) is proportional to twice the weight and
hence is twice as big. This is why the 2 in the radicals in (4) and (5) becomes a 4 in (7) and (9).
Similarly, in the free fall case, (v; + v,) is proportional to qE; in the field aided drop, it is propor-
tional to 2gE. That is why the 6 in (5) becomes a 3 in (9).



There are two things that complicate the results in (5) and (9) and both have to do with the viscos-
ity of air,n . First, n is a function of temperature. To good accuracy
3

273.16 + 5(273.16 +T+ 110.4) (10)
293.16 293.16 + 110.4

Mo = 1.81804x10‘4(

The units of the viscosity as given in (5) are gm cm™ s also called a Poise. In (10) T is the Cel-
sius temperature. The constant out in front is obviously the viscosity at T = 20 C. You must use
(10) as the first step in evaluating the viscosity.

Worse yet, there is another a hiding in n . Stokes’ law assumes that the fluid that the sphere is
moving through is a continuous substance. In a continuous fluid, fluid particles are in immediate
contact with their neighbors, and thus in some sense couple to their surroundings in a maximally
efficient way. A real gas is not a continuous medium but a swarm of particles that must fly for a
distance called the mean free path before they become aware of conditions in their neighborhood.
Thus a real gas is less able to organize resistance to an object moving through it than a continuous
fluid would be. The difference starts to become important only when the moving object is small,
meaning comparable with a mean free path or smaller. Thus the resistance force on a small object
moving through a gas is less than what you would calculate based on a measurement of the vis-

cosity made with a big object. n, is a viscosity measured with big objects, where the mean free

path doesn’t matter. Your object is going to be a 1 um (or even less) radius sphere and the mean
free path in the surrounding air has been measured as 0.0673 um. So if you use n, as the viscos-

ity you will overestimate the drag force and thus get q wrong. A fairly serious analysis of the situ-
ation (M.D. Allen and O. G. Raabe, Re-evaluation of Millikan’s Oil Drop Data for Small Particles
in Air, J. Aerosol Sci. 13, 537 (1982)) suggests that the viscosity that should be used in our exper-
iment is

Mo
n=—r. (11)
+_
1 aP

In this equation n, comes from (10); P is the pressure of the air in the room in torr (mmHg); and

b =5.908 103 torr-cm. So fora=1 um and P = 760 torr, denominator in (11) corrects n by
almost 8%. (Millikan was aware of all this; he just used a slightly larger value of b.) 1 um radius
drops were the biggest ones | used when | did this experiment a few years ago.)



The easiest thing to do at this point is to substitute (11) into (2) in the free fall case or (6) in the
field forced drop case and solve again for a. In both cases you get a quadratic equation that has
only one positive root. The results are

2
a= |Bo IV b (12)
4P2 Zpg 2P

_ [0, MoV b (13)

in the free-fall case, and

when the field helps push the droplet down.

To wrap all of this up, in the free fall case (11) is substituted into (5) to give
1

CexD( M9 1 ;
TV 2p'g Vi (Vf+vr)' (14)
b
(“5)

and (12) is used to calculate a. In the field forced fall case (11) is substituted into (9) to give
1

N 1
9 2
2

N 1w

V {4p'9

1+—
aP

and (13) is used to calculate a.
What else?

The whole game here is to determine the g on a bunch of different drops. To measure the charge
on the drops you want to have drops with only a few charges on them, and the uncertainty in the
values of g you derive must be well established by your data analysis and smaller than the charge
quantum. If the errors are bigger than that, the charge will look continuous. So you must use the
propagation of errors formulas you presumably got taught in P50 something to calculate the
uncertainty in each and every g. Needless to say, Mathematica (or whatever similar thing you
like) makes a world of difference to the labor involved in this. But the error analysis really isn’t
optional.



So you’ve at last got the charges on a bunch of different drops. Now what?

Once you have the charges on a bunch of drops what do you do? You don’t do what most students
do at this point. They (1) forget about calculating errors in g; (2) divide each charge they measure

by 1.602x107%° C; (3) throw out the fractional part of the result of each division; (4) multiply

each quotient by 1.602x107° C ; (5) notice that each of the resulting charge values is a perfect
integral multiple of e, and (6) declare victory and perfect agreement with the “accepted” value of
e. There are usually enough extra steps and other nonsense around to camouflage this process to
some extent, but this is the heart of what they do. This is an obviously misleading way to process
the data. You should resist the temptation to use what you already think is the “right answer” in
your data analysis.

Here’s an alternative suggestion Find a charge that when divided into each one of your measured
charges gives a result within an error bar or two of an integer for each and every charge. The
smallest charge you measure or the smallest difference between two charges should be a good
candidate for the number to divide by. If you’ve done a good experiment this will work. Next you
want to dither that divisor around just a little to minimize the sum of the square of the differences
between the each division result and the integer nearest it. Measure the distance to each nearest

integer in units of the error in the division result. (This is minimizing Xz with respect to divisor.
Look back at P50 something.) The largest such number you can find is your value of e.

Confused? You’ll have plenty of time to think about it while timing drops. Your instructor may
also have even better suggestions, or maybe be able to help you make sense out of this one.
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