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ABSTRACT OF THE THESIS

Filter Diagonalization Method as a High Resolution Spectral Estimator

By
Jianhan Chen
Master of Science in Chemistry

University of California, Irvine, 2000

Professor Vladimir A. Mandelshtam, Chair

The theory of the Filter Diagonalization Method (FDM) for processing NMR
signal is briefly reviewed. Stability and performance of FDM for harmonic inversion
(i.e. fitting a time signal by C(t) = 3 dre™"*) of noisy data is examined. Although
FDM is capable to extract accurately the parameters of narrow spectral peaks, in
the presence of broad peaks (or strong background spectrum) and noise,the FDM
ersatz spectrum , ie. I(w) = ¥, di/(wx — w), maybe distorted in some regions
and be sensitive to the FDM parameters, such as window size, window position,
etc. Some simple hybrid methods, namely, hybrid FDM+FT, hybrid FT+FDM and
hybrid FDM+FDM, that can correct the ersatz spectrum, are discussed. Then, a
more consistent approach, the multi-scale FDM, is introduced to solve the instability
problem, in which some coarse basis vectors describing (in low resolution) the global
behavior of the spectrum are added to the narrow band Fourier basis. The multi-
scale FDM is both stable and accurate, even when the total size of the basis (i.e., the
number of coarse plus narrow band basis vectors) used is much smaller than what
would previously be considered as necessary for FDM. This, in turn, significantly
reduces the computation cost. Extension of the 1D multi-scale FDM to a multi-

dimensional case is also presented.

vii



General Introduction

The two fundamental problems in NMR spectroscopy, as well as in most other
spectroscopies, are resolution and sensitivity. During the last decade, sensitivity has
been steadily improved with new advances in NMR probe design and high-field mag-
net technology. However, the fundamental resolution solely depends on the attainable
magnetic field strength and has seen only very limited improvement over the same
time frame. Conventional pulsed NMR has been known as Fourier Transform NMR
(FT-NMR), because it depends solely on FT to transform the time signals to spectra.
The Fourier transform is a linear method that is considered fast, numerically stable
and highly reliable. However, in frame of FT, the spectral resolution in each frequency

dimension is limited by the so called FT time-frequency uncertainty principle,

SF~ —— (1.1)
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where N; is the number of acquired time-domain points and 7; is the sampling time
interval. Since each increment in an interferometric dimension requires at least one
repetition of the entire pulse sequence, the time signal is almost always truncated
in the indirect dimensions, especially in the case of high-dimensionality experiment,
leading to poor resolution in these dimensions. In addition, an absorption-mode spec-
trum is always desired. In the 1D case it is obtained by simply taking the real part
of the FT spectrum after it is correctly phased; in 2D NMR purely phase modu-
lated signals give rise to mixed-phase (“phase-twist”) line-shapes in which neither
the real nor the imaginary part of a 2D FT spectrum can be phased to the desired
double-absorption line-shape [14]. Absorption-mode 2D spectra can be obtained from
a pair of amplitude-modulated signals or from a pair of N- and P-type data sets by
taking appropriate linear combinations [16], which necessitates using data sets twice
as large. In 3D NMR the triple-absorption line-shape is obtained by using 22 bigger

sets. Note though that in some experiments, as in 2D-J, the hyper-complex signals



are unavailable, so that only absolute-value spectra can be obtained, which leads
to poor resolution. Due to these problems, extensive efforts have been devoted to
the development of alternative techniques to FT. The various methods proposed in-
clude linear prediction (LP), maximum entropy reconstruction, maximum likelihood,
Bayesian analysis etc [15]. Despite the long history of these alternatives, none of them
has been widely used in practical analysis of typical NMR signals. The main reason
may be that these methods are computationally expensive, numerically unstable and
can lead to unreliable results. Thus, Fourier transform remains the method of choice

for NMR data processing.

Recently, the Filter Diagonalization Method (FDM) has emerged as a powerful
high-resolution alternative method to FT for processing time signals. FDM pos-
sesses some unique features which, in certain respects, makes it superior to the other
method. For some 1D problems, especially involving long and noiseless signals, FDM
is extremely efficient. However, its actual strength reveals outside the 1D appli-
cations. In multi-dimensional FDM, the whole multidimensional data set is pro-
cessed simultaneously and fit into a certain multidimensional parametric form. The
resolution in every dimension is limited by the total number of time signal points,
Niotas = N1 X Ny X ... x Np, instead of being limited by the number of signal points
in each dimension separately. This makes it possible to use longer running time data
acquisition to enhance the resolutions in the indirect dimensions. In addition, FDM
can be used to compute various non-trivial reduced-dimensionality projections like
absorption mode 45° projection of a 2D-J spectrum [10]. Compared to other high-
resolution methods like Linear Prediction (LP), FDM does not require a good guess of
parameters to be used and usually gives reliable results. In the rest of this thesis, the
basic theory of FDM will be first introduced in Chapter I, then an improved version

of FDM, Multi-Scale FDM, introduced in Chapter II.



Chapter I

Theory of the Filter Diagonalization Method (FDM) for
NMR Data Processing



1.1 1D FDM

The Filter Diagonalization Method (FDM) was originally designed by Neuhauser
[1] for iterative diagonalization of large matrices which arise in quantum dynamics
calculations when using a time-dependent approach. Later, it was reformulated [2]
and split into two independent steps, namely, generation of a quantum time correla-
tion function and its spectral analysis (harmonic inversion). In this new formulation
FDM is suitable for spectral analysis of a general experimentally-measured time sig-
nal, simply by ignoring the first step of signal generation. At this point, FDM was
conceptually new and potentially very promising, but its implementation was numer-
ically inefficient. Mandelshtam and Taylor [3] reformulated it for the conventional
problem of processing a time signal defined on an evenly-spaced time grid, and found
a way to significantly improve its performance. FDM has since found many applica-

tions in diverse fields and in particular for processing NMR time signals [5-12].

The basic object of 1D FDM is to fit a given complex time signal (FID) ¢(n) =
C(t,), defined on an equidistant time grid ¢, = nT,n =0,1,2,..., N — 1, to the sum
of exponentially damped sinusoids,

c(n) = i dre™ "k = i eIk Tk (1.2)

k=1 k=1
with a total of 2K unknowns: the K complex amplitudes d; and complex frequencies
wy = 27 fy, — ik, which include the exponential damping. We call the line list {w, di }
a parameter representation of the signal, and every peak specified by a pair of w; and
dy a pole. This problem is often referred to as the Harmonic Inversion Problem (HIP).

Although it is highly nonlinear, its solutions can be obtained by pure linear algebra.

We assume that the complex time signal ¢(n) is associated with a time autocorrelation



function of a fictious dynamical “Hamiltonian” operator ) with complex eigenvalues

{we} [2];
c(n) = (Qo‘e_i”TQQJO) . (1.3)

Here a complex symmetric inner product is used, (a|b) = (bla) without complex
conjugation. @, is some arbitrary“initial state” (as will be clear later, neither Q
nor @, is needed to known explicitly). Assume that there is a set of orthonormal

eigenvectors, { Y}, that diagonalizes ), then we can write,

Q zgwk\rk)(rk\ . (1.4)

where the eigenvectors are orthonormalized with respect to the complex symmetric

inner product, i.e.,

(Y| Yrr) = O - (1.5)
Inserting Eq. 1.4 into Eq. 1.3, we obtain Eq. 1.2 with

di/* = (T4|o) . (L6)

Therefore the harmonic inversion problem of Eq. 1.2 becomes equivalent to diagonal-

izing the “Hamiltonian” O or, equivalently, the evolution operator U =e i,

UT]C = U,ka y (17)

with u; = e "% The eigenvalues of U thus determine {wk}, line positions and

widths, and the eigenvectors determines {dy}, line amplitudes and phases.

Even though neither of U or ® is explicitly available, the matrix representation
of U in an appropriately chosen basis set {U,} can be computed purely from the time
signal ¢(n). The basis, which is not necessarily orthonormal, can be chosen in many
different ways. Chosen naively, the number of basis functions would determine the

size of the linear system which must be solved. For an FID of N complex points, the



maximum basis size is N/2: each Lorentzian line requires two complex numbers to
specify it, so that at most M = N/2 lines can be uniquely fitted to a signal of length
N.

1.1.1 Krylov Basis
The simplest basis would correspond to a set of Krylov vectors |®,),n =
0,1,2,...,M — 1, with M = N/2, generated by the evolution operator U:
®,,) = U ) = exp(—intQ)|P). (1.8)
Based on Eq. 1.3, the matrix elements of U in this basis are trivial to obtain as
UL = (®0]U|@m) = (@n|®msn) = c(n+m+1) . (1.9)
Since the Krylov basis is not orthonormal, the overlap matrix
U = (®,|®,,) = c(n+m), (1.10)

must also be assembled. Here convenient notations UMand U©® are adopted to
represent the matrix representations of U and overlap matrix. The fitting problem of
Eq. 1.2, or equivalently, the operator eigenvalue problem of Eq. 1.4, is then cast into

a generalized complex symmetric eigenvalue problem
UVB;, = v, UYB, . (1.11)

The eigenvalues u; = e ™ then yield the frequencies w; and the eigenvectors By,

the amplitudes dy:

12 M-1 M—1
4" = 3 [Bil, (®a|®o) = 3 [Bil,c(n), (1.12)
n=0 n=0
which follows from Eq. 1.6 by substituting

6



T) = Z_O [Bkl,, [Pn) (1.13)

Note that the eigenvectors By, are normalized with respect to the overlap matrix U®

since the Krylov basis used here is not a orthonormal basis,

BIUOB,, = 6. (1.14)

Example: model signal with 2 lines.

The simplest nontrivial example of HIP corresponds to the case of two sinusoids

(K =2 in Eq. 1.2, i.e., we assume that the signal is

Cp = de—inr(w—Aw) + dle—inT(w—l—Aw) ’ (115)

n=012.,N—1=2M—1

The case of M =1

Although we know that with just one basis function we cannot possibly get two
eigenvalues, we consider this case as it reveals some interesting property of FDM.

M =1 corresponds to the total signal length N = 2, i.e., only two signal points
will be used. Eq. 1.11 for this case boils down to the 1 x 1 generalized eigenvalue
problem,

ClBl = UlcoBl .

There is only one eigenvalue

i ¢t Cinr defz'TAw + dlez'TAw
ulze’ lza:ez drd . (116)

The eigenvector, which is just a number, after normalized according to Eq. 1.14),
B.cyB; =1, is given by

7



Therefore the solution for the amplitude (see Eq. 1.12) is
dl = B100 = d+ d, . (117)

That is, a single-sinusoid-fit of a sum of two complex sinusoids has an amplitude
equal to the sum of the two amplitudes and oscillates with a frequency which is some
weighted average of the two underlying frequencies. Close inspection of Eq. 1.16
shows that even if both genuine frequencies w + Aw were purely real, the solution
given by w; will be complex, i.e., will have some width of order of Aw to account for
the two peaks separated by 2Aw. In other words, the spectrum given by this single
Lorentzian line will be of a low resolution type. Also note, that in the Aw — 0 limit,

i.e. the single sinusoid case, Eq. 1.16 and 1.17 recover the exact result as they should.
The case of M = 2

The case of two Krylov basis functions requires the use of N = 4 signal points

and needs the solution of the following 2 x 2 generalized eigenvalue problem,

¢ ez | [ [Bily co ¢ | [ [Bily
= Uk

Cy C3 [Bk]g C1 C2 [Bk]g

The eigenvalues can be found from the roots of the characteristic quadratic polyno-
mial,
C1 — UpCy Co — UrCy
det =0
Co — UpCy C3 — UpC
Substitute the assumed form for ¢,,’s (Eq. 1.15), one can check that the two roots are

—inT(wtAw)

e Solving for the eigenvectors, normalizing them according to Eq. 1.14,

and using Eq. 1.12 then recovers the two amplitudes, d; = d and dy = d'.

Therefore, for a noiseless signal made of two complex sinusoids the spectral pa-
rameters can be calculated to machine accuracy using just four signal points, no

matter how close the two frequencies are to each other. This is quite different from



the conventional FT spectral analysis which will require a very fine frequency grid
(with the spacing less than Aw) and therefore many time-domain points to resolve
two very close lines, no matter how high the signal to noise ratio (SNR) is. That is,
the F'T cannot take the full advantage of the high SNR, while in parametric fit of
the signal the sensitivity is naturally converted into high resolution. It might also be
useful to notice that for M > K (here K = 2) the U") and U® matrices will indeed
be singular with M — K zero eigenvalues. In such a case, solving the generalized
eigenvalue problem Eq. 1.11 requires special algorithms such as the QZ-algorithm
[17] which can take care of the singularities. It can be checked that for, e.g., M =3
the corresponding 3 x 3 generalized eigenvalue problem will have the same K = 2

correct eigenvalues, and the two eigenvectors will result in the correct amplitudes.

Armed with Eq. 1.9, Eq. 1.10 and Eq. 1.11, the problem is certainly easy to set
up, but it is unfortunately very difficult to solve. The U matrices are dense and far
from diagonal. Furthermore, a typical 1D NMR signal will contain several thousands
data points, which will lead to matrices with dimension of about a few thousand by
a few thousand. A typical eigenvalue solver numerically scales as M?3. Thus, huge
matrices are very unfavorable. In addition, if the signal happens to contain far less
than M peaks (K < M), then the basis will be over-complete and the matrices
will by ill-conditioned or singular (in case of no noise). The result of these practical
considerations is that, formulated in this way, the fitting problem, is a huge and ill-
conditioned linear system. This means that it cannot be applied on a regular basis to
signals of size more than, say, a few thousand data points. Fortunately, the problem
is not so bad as it seem. There is a way to avoid diagonalizing the huge matrices
in one step by applying a special unitary transformation to the data matrices U
and U© to make them suitable for a small subspace diagonalization, which is to be

introduced in the next section.



1.1.2 Fourier Basis

The primitive Krylov basis functions are not the only choice. Any linear combi-
nation of them will serve as a basis. Among them, a good choice would be a Fourier
transform of the Krylov basis, of which a particularly simple and efficient variant is

the rectangular window Fourier basis [3], defined as
M-1
¥;) = 3 ™ |2,), (1.18)
n=0

with {¢,} being a set of equidistant values taken inside a small frequency window
of interest. For this choice the transformation from the Krylov basis {®,} , n =
0,1,2,...,M — 1, to the Fourier basis {V,} , j = 1,2,..., M, is unitary. More im-
portantly, due to the Fourier transform, each basis function |¥;) is localized in the
frequency domain, i.e., it is a linear combination of only those eigenfunctions |Yy)
of Q) for which wj, ~ ¢;. This implies that we can consider a small subset of, say,

Kyin < M values ¢, in the frequency region [Wmin, Wmax] Where *
)= 3 [Bk]j@ : (1.19)

Wk ~Pj

This means that the operator U can be diagonalized in the Fourier subspace
corresponding to some pre-specified frequency window to yield the eigenvalues and
eigenvectors from this window. By choosing another window one can obtain another
subset of converged eigenvalues and eigenvectors, and so on. Note that the extraction
of the eigenfrequencies wy to a high precision only requires that the local completeness

condition,

*A tilde(~) is added to notation B because |Y}) is now expanded in a different basis other
than Krylov basis. It will also be added notation U, the matrix representation of U operator

in the FT basis.
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plpj) = ]\24—7: > p(wr) , (1.20)

be satisfied for the densities of the grid points p(¢;) and that of the eigenfrequencies
p(wg). In other words, the number Ky, of the basis vectors ®; should be larger than
the number of the eigenvalues in the small interval [Wpin, Wmax|- Moreover, the local
spectral analysis not only avoids problems of estimating the total rank K of the signal
subspace, but to certain extent it is also insensitive to the spectral properties outside

the chosen small spectral domain.

The matrix elements of the evolution operator UP = ¢=ir™@ between any two
Fourier basis functions |¥,) and |¥;/), defined by Eq. 1.18, can also be evaluated only
in terms of the measured signal ¢(n). Let us define the matrix elements of U® in the

Fourier basis

[ﬂ(”)]jj_’ = (v,)0w,). (1.21)

Since the vectors |¥;) defined by Eq. 1.18 are linear combinations of the primitive
Krylov vectors |®,,), the matrix elements of U®) in the Fourier basis are also functions
of only the {¢(n)} sequence and do not depend explicitly on either of the auxiliary
objects U, |Y)) or |®). Inserting Eq. 1.18 into Eq. 1.21 and using the result of

Eq. 1.9, we have
) M-1M-1 .
[U g ] =3 Y e™ie™c(n+n +p). (1.22)
jjl n’:O n:O
This double sum can be simplified to a single sum by changing the variables from

(n,n') to (I =n+n',n') and then summing over n’, which, after some algebra, gives:

¢iolr M (g0 ;)]

~(p) &
U =5 . 1.23
[ :|]]’ Zl ]_ — eZT(wj’_Wj) ( )

=0,

(o+1)(M-1)
x Z e"”‘pjc(n—}—p) ,
n=cM

where S defines symmetrization operator over the indices j and j':

11



S giy = Giy + 9y - (1.24)

Eq. 1.23 is, in principle, correct for all choices of ¢ and ¢, except for the singularity
arising at ¢; = ¢;.. To obtain a numerically practical expression for this singular

case we evaluate the ¢; — ¢, limit leading to

o - S (M = [M =0~ 1])e(n+p) (1.25)
13 n=0

Notably and quite importantly, the resulting matrices fJ(p) have a sinc-like structure
with generally large diagonal and decaying off-diagonal terms as expected. The latter
become much smaller than the former once M7|p; — ;| > 27. It is this structure
which justifies the possibility to perform the eigenvalue calculation in a small Ky, X

(

Kyin block fashion for possibly large M x M matrices U p). In another word, now we
can analyze the whole spectrum, which could be complicated and contain thousands

of peaks, by breaking it into small pieces.

After the new matrix representations are computed, one can plug them into the
same generalized complex eigenvalue equation (Eq. 1.11) and solve for eigenvalue {uy}
and eigenvectors By. According to Egs. 1.6 and 1.18 the amplitudes dj can be easily

computed using
d/>=8,C (1.26)

where the coefficients of the 1 x K;, column vector C are computed using F'T of the

original 1 x M signal array C:
~ M_l .
[c] =Y e™ic(n), j=1,2,..., Kyn . (1.27)
J n=0

Thus we express the amplitudes {d;} explicitly in terms of B, and the time signal

c(n) as,

Kwin

M—1
d,l/2 = Zl [Bk]j ZO e™ic(n) . (1.28)
i= n=

12



An alternative expression for the amplitudes

As for normal eigenvalue solver, the eigenvalues are obtained variationally, while
the eigenvectors are obtained in a non-variational way. Thus according to Eq. 1.26 the
amplitudes dy are generally much less accurate than the frequencies wy. In addition,
given an eigenvector By, Eq. 1.26 only makes use of the first half (M = N/2) of the
time signal available and is not always the most accurate expression for the coefficient
dj that exists, especially for a narrow pole wy. As such a more accurate formula is

derived for the narrow poles. First let us rewrite Eq. 1.6 in a more general form:

d/

Il

(Tk|®o) = ([U/Uk]nl Tk|(1)0)

= ul;n’ (Tlc|0"'(1>o) = u,;”' Z [Bk]j (V| ®n)
M-1 ’
— e’n',7 Z I:Bk]] Z ein’T(wk+i’y)einT(pj Cntn'
J n=0

where v and n' are free parameters. We can now average the above expression over

n'=0,1,..., Mye — 1 for an arbitrary M, between 1 and M,

/2 1—e™™ ~
dllc ’ - ]_ — e_MaverT')’ Z [Bk]]
J

Maver=1M-1

> Z ein T(wk-l—zv)ezm‘%’ Cran! (129)

n’=0 n=0
where the averaging was done by weighting each term with e~ (to eliminate the
U -1 . .

prefactor) and then normalizing the final result by [E%ggr_l e 7] . Just like in
Eq. 1.22 one of the two sums in Eq. 1.29 can be evaluated analytically (see Chapter
2). To eliminate the ambiguity in the choice of the free parameters in Eq. 1.29 for
narrow poles wy (for which Eq. 1.29 is relevant), it suffices to stick with Mye, = M

and
—Im{wi} , Im{wk} <0

0 , Im{wk} >0

13



For model signal or real signals with very high SNR, Eq. 1.29 does yield the amplitudes
with more accuracy. However, it will lead to an ambiguous result if M7|Im{w}| > 1,
in which case the signal corresponding to these “broad” peaks should decay away
very quickly and thus including longer signal to calculate their amplitudes would

only deteriorate the accuracy. In these cases, Eq. 1.26 should be used.

1.1.3 FDM as a Spectral Estimator

Up to this point, FDM seems to be just a parameter estimator which can provide
the parameter representation {wy,d;} for a given FID by fitting it into Eq. 1.2.
However, FDM can also be used as a spectral estimator. Once the parameters are
available, one can easily obtain the spectral representation I(w), formally defined as

the infinite time Fourier integral,
(W) =i / C(t)e“tdt (1.30)
0

by simply substituting Eq. 1.2 into Eq. 1.30 and integrating the result analytically.
The corresponding spectral estimate is here called the FDM ersatz spectrum,

(W) ~ fj i (1.31)
k=1 Wk — W

In FDM, some poles with extremely small imaginary part may occur (either due to
the present of noise or real peaks), which leads to high spikes in the ersatz spectrum
producing unfavorable results. Therefore, it is often useful to include a smoothing
parameter I' to improve the appearance of the spectra,

I~y —% (132
Swop—w—il '

The absorption mode ersatz spectrum corresponds to

Alw) ~ élm {L} | (1.33)

wp —w—1T

14



In a single calculation, FDM can only obtain results for a particular small window,
the construction of the overall spectrum requires one to combine the results from
different spectral windows. To reduce the inaccuracies at the edges, the adjacent
windows must overlap. One way to combine the results from overlapping windows
is to scale the amplitudes of poles in each window, so that the contributions from
all the windows that cover the same region add up to one. However, this seemingly
obvious procedure often fails as it corresponds to a non-analytic transformation, which
may destroy the very intimate relations between different terms in Eq. 1.31, based
on mutual interferences and cancellations. A safer way to do this is first construct
the corresponding spectra inside each window, then sum them up with appropriate

weighting functions that add up to one. Such as

I(w) = ¥ (@)1 (W), (1.34)

where 7 represents the 1-th window, and ¢(”)(w) is an appropriate weight function

which should satisfy ¥, ¢ (w) = 1. Any reasonable ¢ (w) should work well.

1.2 2D FDM

Given a 2D general complex valued time signal ¢(7i) = c¢(ny1, name), with n; =
0,1,...,N; — 1,ny = 0,1,..., Ny — 1, where 7 is the time vector !, defined on an
equidistant time grid, we want to obtain a spectral representation of it. Ideally, we

assume that the 2D signal can be fitted into following expression,

fEven though only 2D case is considered, the vector notations make the extension to more

than 2D cases straightforward

15



P e

K K
Cq = Z dpe "™k = Z di exp (—ini 7w — iNeToway,) (1.35)
k=1 k=1

where &y = (wig, wax) are vectors of unknown complex frequencies, wy, = 27 fix — iV,
and dj are unknown complex amplitudes. The total number of unknown complex
parameters in the 2D line list {&g, di} with K entries is 3K. This is a 2D harmonic
inversion problem (2D HIP). Just like 1D HIP, it can be cast into a linear algebraic
problem, or more precisely, a family of generalized eigenvalue problems, by associating
the 2D time signal to a double-time correlation function of a fictitious quantum system

with two commuting non-Hermitian symmetric Hamiltonians Q; and Qs [4,9,11],
o(it) = (Bo|e™ ™Dy ) = (@p|em DI gy) (1.36)
The Hamiltonians are assumed to have spectral representations,
WYy =wnYu, [=1,2. (1.37)

Inserting Eq. 1.37 into Eq. 1.36, we can obtain

() = ) dyypye” Mk T2k, (1.38)
k1,k2
with
ik = Thyiy b1k, bar, = (Tiry [ Tor, ) (Ro] L1y ) (Po| Yok, ) (1.39)

Note that although we assume that the Hamiltonians Ql and QQ commute
with each other, Eq. 1.37 does not assume that T, = Yo, or equivalently, that
(Y1x|YTor) = O1k2kr, as a “naive” approach would do. The purpose is to avoid the
problem of finding a unique set of eigenvectors which simultaneously diagonalizes both
Hamiltonians, as in cases of noisy signal or signal with degenerated poles such a unique
set, of eigenvectors does not necessarily exist. In other words, Ty, x, = (Y1x,| Tor,) is
not necessarily diagonal; nor can it necessarily be reduced to diagonal form by permu-

tations. However, if we let (Y| Yo ) = 015 2% in Eq. 1.39, the representation Eq. 1.38

16



boils down to the ideal representation of Eq. 1.35. Thus adopting representation of
Eq. 1.38 covers the case of degenerate spectra and avoids the necessity of generating
a unique set of eigenvectors { Y}, making the 2D FDM more robust and applicable

to noisy time signals.

Matrix representations of the associated evolution operators U, = e~ are also
available only in terms of 2D time signals *. When a 2D FT basis, define as,

My M

) =Y > BV, (1.40)

n1=0mn2=0
is adapted, it is “locally complete” within the chosen spectral window. ¢; =
(p15,925), 3 = 1,2,...,K, is a 2D grid within the chosen spectral window. We

can expand |Yy) in the local Fourier basis,

Yu) =X [Bl,c]j 0,), 1=1,2. (1.41)

J

The operator eigenvalue problems in Eq. 1.37 can be then cast into two generalized

eigenvalue problems,
Ilelk = ulkaOBlk y = 1, 2. (142)
The amplitudes dys are then obtained from the eigenvectors as
~T ~
by = By, C , (1.43)

where the coefficients of the 1x K,;, column vector C are computed using the following

2D FT of the original signal array c(i):

[é]j = 3 3 ey, j=1,2,.,K . (1.44)

fsee ref. [11,13,28] for the expressions for computing U®) matrices
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The 2D spectral representation, which corresponds to a 2D Fourier integral of the

signal, can then be written in terms of the Green’s functions (or resolvent operators),

o0 . &) .
I(wl, wg) = —/0 dtlezwltl /0 dt261w2t2 C(tl, tg)

= ((I)()‘ G‘l(wl) G!Q(WQ) (I>()) (145)

_ Z dklk? ’ (146)

k1,k2 (Wi, — w1)(war — wa)

where an [-th Green’s function can be represented in terms of the [-th eigenvectors

and eigenvalues,

. 1 Ty ) (YT
Giw) = = = M

Q —w r Wik — Wy

(1.47)

In addition, with Eq. 1.47, one can easily calculate the corresponding 1D projections
in both dimension,

Ti(wr) = (@0 | Gi(w) @) =3 ik

> o) (1.48)

where by, = (Ti|®g) as defined in Eq. 1.39.

Furthermore, it is often desirable to produce an absorption mode spectrum, which
in the 1D case is obtained by simply taking the real part of the correctly phased FT
spectrum. In the 2D case, purely phase modulated signals give rise to “phase-twisted”
line-shapes. Neither the real or the imaginary part of 2D FT complex spectrum yields
desired double absorption line-shape [14]. A double absorption spectrum can be only
obtained by acquiring hyper-complex data [16], while in some other experiments, such
as 2D-J, the hyper-complex signals are not available, leading to poor resolution even
when the data sets are large. In the context of FDM, a double absorption spectrum is
not much harder to construct than the conventional 2D complex spectrum (Eq. 1.45).

One way of doing this is using following form,

A(wr,w2) = > Re{dii} ] Im{;} , (1.49)

kiks 1=1,2 Wi — Wi
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where we assume that the signal is correctly phased. However, this expression is
not an unique representation, and is meaningful only when the different peaks with
absorption shape are not overlapping too much, i.e., the interference effects are not

significant.

Removing the artifacts by FDM averaging

Unfortunately, 2D FDM does not always work as well as 1D FDM. Spectra ob-
tained from single 2D FDM calculation are never free from artifacts. The spectra
would generally be unsatisfactory for relatively low SNR signals where the FT could
still provide quite high resolution, given signals of sufficiently large size. The 2D FDM
spectra are unstable with respect to the FDM parameters as well as small changes of
the input signals. This instability manifests itself in numerous spurious spikes with
random appearance. While the instability in the 1D FDM occurs for only “exotic”
signals and can be eliminated by the use of multi-scale basis (see Chapter 2), in 2D

FDM it is rather difficult to get rid of.

At this point it is still not absolutely clear what causes the instability in the 2D
FDM calculations. One explanation [28] is based on the comparison between the
1D and 2D methods. In the 1D FDM a signal of size N leads (in the Krylov basis)
to a generalized eigenvalue problem of rank Myyyoy = N/2, which, in turn, yields
N/2 pairs of (wg,dy), i-e. totally N parameters. This means that the solution of the
HIP, Eq. 1.2, is unique with the total number of equations exactly matching the total
number of unknowns. In the 2D case the situation is different. In the Krylov basis the
total rank of the U-matrices is Mkryiov = N1N3/4, resulting in Ny N,/4 frequencies
wy for each generalized eigenvalue problem, Eq. 1.11. If according to the form of

Eq. 1.35 we assume the total number of 2D Lorentzian peaks (each characterized
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by two frequencies wiy and wy, and an amplitude di) to be Mgyyoy, We will have
to deal with an over-determined problem with totally N; N, equations and %NINQ
unknowns. Therefore for a general 2D array c,, ,, of fixed size the exact solution of
the 2D HIP is, strictly speaking, not obtainable by FDM. When applying FDM we
implicitly assume that the data set can be fit by the parametric form of Eq. 1.35,
i.e. we assume that this data is not generic. That is, the Lorentzian form cannot be
satisfied exactly for general noisy signals, using the number of parameters consistent
with the FDM procedure. The above explanation does not pretend to be absolutely

correct but it, at least, confirms that there is something wrong with the 2D HIP.

One simple solution to overcome this is to take advantage of the randomness of
the artifacts appearing in the spectrum when the signal size is changed [10,11]. When
sufficiently many FDM spectra calculated using different N; are summed together,
these artifacts magically average out. We call it the signal size averaging. 1t is appli-
cable only in situations where the signal is sufficiently long in at least one dimension
such as the running time. One obvious drawback of the method is that Ngpy (rather
than one) FDM calculations have to be performed, significantly increasing the overall
numerical effort. The second serious drawback is that an averaged spectrum does not
correspond to a compact parameter list. It is the latter reason though which explains
the averaging phenomenon as the huge number of parameters from different FDM
calculations used to construct the averaged spectrum eliminate the overdeterminicity

problem of a single solution of the 2D HIP.

There is a more elegant way to perform averaging. Instead of changing the signal
length we exploit the great sensitivity of the output spectrum to small variations of
the input signal of fixed size. We first perturb the signal by adding small amount
of pseudo-noise and then sum up resulted the ersatz spectra. We call it a pseudo-

noise averaging procedure. Note, that the signal size averaging has essentially no
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free parameter and is limited by the maximum signal size, while the pseudo-noise
averaging uses arbitrary number of samples with an arbitrary noise amplitude A,
which usually has to be determined experimentally. Furthermore, the pseudo-noise
averaging can be implemented at the stage of applying Eq. 1.11 using the fixed U-
matrices computed once from the original signal because that U-matrices are linear
functions of the input signal ¢z, which will lead to some simplification of the averaging

procedure [28].
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Chapter II

Multi-Scale FDM for Spectral Analysis of Noisy Signals
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2.1 Introduction

As described in Chapter I, FDM can be used both as a parameter estimator and
spectral estimator. However, Use of a complicated non-Fourier spectral estimator
can be justified only if the result is at least as reliable as the Fourier spectrum of the
same truncated signal and, at the same time, may deliver a higher resolution as one
expects from a high resolution method. This is usually the case (some examples can
be found in refs. [3,7]). As long as the two key assumptions, i.e., Eq. 1.2 and the
block diagonalizability of the U matrix in the Fourier window basis, are well satisfied,
FDM can provide a high fidelity line list and thus an accurate spectral estimate using
Eq. 1.31. However, when the signal has a low signal /noise ratio (SNR) and/or when
its spectrum has some significant non-localized global spectral features the line list
may contain some poorly converged poles and result in inaccurate ersatz spectrum.
Fig. 1 shows such a case, in which the signal used is the first increment of a 2D
HSQC NMR signal of the steroid progesterone [6] with many overlapping multiplets
and low signal/noise ratio. For N = 2000 the FT spectrum is converged in the sense
that taking a longer signal does not improve the resolution further, but only increases
the noise level. Although one may be interested in a parametric quantification of
this spectrum using Eq. 1.2, clearly, in this regime the use of a non-Fourier method,
as a spectral estimator toe improve the FT resolution, is hardly justified. However,
to demonstrate the point of the above discussion we apply FDM to the same data.
The resulting FDM ersatz spectrum is distorted in some regions and appears to be
sensitive to the parameters used, such as window size, number of the Fourier basis
functions Kyi,, etc. We will refer to this problem as the “instability” problem in the

rest of this chapter.
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FIG. 1. Spectra obtained from a noisy 1D NMR signal of length N = 2000 and spectral
width SW = 4 ppm (2kHz) using two different methods, FT with an appropriate apodization
(bottom) and FDM (the upper two traces). The FDM ersatz spectra used slightly different
numbers, Kyin = 48 and Kyin = 50, of the Fourier basis functions per window, correspond-
ing to bandwidths 0.192 ppm and 0.2 ppm, respectively. Note that a multi-window approach

(see text) was used to construct the overall FDM spectra.

Qualitatively, the origin of this instability is as following. We use narrow band
Fourier basis functions, Eq. 1.18, which are highly localized in the frequency domain.
On one hand, this is a big advantage of using the Fourier basis, on the other hand, in
the presence of noise, a narrow band basis is inadequate to represent a broad spectral

feature that is not localized in a single window, as each basis function |¥;) is “locked”
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on the noise peaks that appear close to ¢; and cannot “see” the peaks that are far
away. For example, if there exists a broad peak that centers outside of the current
spectral window but tails into the window, the narrow band Fourier basis would not
be enough to accurate represent the contribution of this broad peak. Thus, with the
narrow band Fourier basis only, we may have some ambiguity in reproducing the broad
spectral features or the baseline, and this is the source of instability. Obviously, such
instability can sometimes be reduced by using larger windows. However, increasing
the basis size does not always work, and even when it does, it is impractical due to
very unfavorable scaling of the computational cost for an eigenvalue solver. Therefore,
we need to improve the algorithm to make it robust and reliable even for such kind
of noisy signals, but avoid the computationally expensive solutions. In this chapter,
we will introduce some primitive method and a more consistent method, multi-scale

FDM, to solve this problem.

The rest of this chapter is organized as followings. In Section 2.2 three primitive
hybrid methods using FT and /or FDM are discussed. Section 2.3 presents Multi-Scale
FDM with some model and practical examples, including NMR, and IR spectra. A
multidimensional extension of the method is given in Section 2.4. At last, a summary
of this chapter given in Section 2.5. The derivation of matrix elements of the U-
matrices for the multi-scale FDM and some numerical implementation notes are given

in the appendixes.

2.2 Some Primitive Hybrid Methods

A discrete Fourier transform (DFT) of a truncated data provides a uniformly

converged spectral estimate, practically, regardless of the signal/noise ratio, the dis-
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tribution of the spectral peaks and their lineshapes and widths. This property can be
attributed to both the advantages and disadvantages of DFT. Ideally, a high resolu-
tion method for solving the harmonic inversion problem, Eq. 1.2, such as FDM, often
leads to significant resolution enhancement, especially, for narrow and/or isolated
peaks. In addition, the high sensitivity of the data acquisition, i.e., high signal/noise
ratio, can effectively be converted to high spectral resolution. However, as discussed
in the previous section, due to imperfections of a parametric fit of a real noisy data
the line list may contain spurious or poorly converged entries, which usually corre-
spond to broad spectral features and lead to distortions in the FDM ersatz spectrum.
In this section we discuss several simple methods to correct the imperfections of the

FDM ersatz spectrum by more efficient use of the signal available.

2.2.1 Hybrid FT + FDM

The fact that the signal is truncated limits the highest resolution we are able to
achieve by DFT. To illustrate this, we rewrite Eq. 1.30 as following,

tmax ) e} .
(W) =i /0 Ct)e! dt + i /t C(t)et dt (2.1)

max

In conventional Fourier spectral analysis only the first term is available. It is the
absence of the second term, i.e., the tail part of F'T, that limits the Fourier resolution.
If somehow this second integral can be estimated and added to the first term, one
can improve the resolution. For example, in most implementations of the Linear
Prediction (LP), the signal is extrapolated beyond the maximum available time #,,,x
and then Fourier transformed (see, e.g., refs. [19-22]). Clearly, this can also be done
by FDM, as the parameters {wy, dx} can be used to extrapolate the signal to infinite
length. Note, yet, that the straightforward use of Eq. 2.1 will enhance the truncation

artifacts. A more appropriate form of Eq. 2.1 is given in ref. [2] where the infinite time
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integral is split into two contributions by inserting the identity 1 = f(¢) + [1 — f(¢)]

with f(t) being some smoothed theta function that vanishes for ¢ > #p,y:

I(w) = i /0 it £ () C/(#)dt + i /0 Tt — F(O] Y dpe i tndt (2.2)

The first integral is computed by DFT, the second, dominated by the long time
(t > tmax) contributions so that for its evaluation one can retain only the narrow
poles wy, that are computed accurately by FDM. Furthermore, it can be computed
efficiently for an appropriate choice of f () as the integrand is some analytically known

function.

2.2.2 Hybrid FDM+FT

Unlike the previous hybrid method, where FDM was used to enhance the reso-
lution of finite F'T, a vice versa strategy is to correct the imperfections of the FDM

ersatz spectrum, given by Eq. 1.2, using post-processing by DFT [3].

One can always estimate how well the original signal is fit by the form of Eq. 1.2
by examining the residual signal,
k
In the context of FDM, the FT spectrum of Cies(t) in the spectral region of interest
measures the imperfections of the FDM line list. To correct the ersatz spectrum

obtained by Eq. 1.31, we can apply FT to the residual signal,

+i /0 e it F)Cres(t)dt | (2.4)

with f(¢) being some appropriate apodization function. By adding FT of residual

signal to the FDM ersatz spectrum, we actually compensate the imperfections that
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occur during the fitting. A perfect fit will result in a zero residual spectrum which will
not affect the FDM spectrum. However, in some situations, the residual spectrum,

appearing as a smooth baseline distortion, could be noticeable.

2.2.3 Hybrid FDM+FDM

As pointed out in Section 2.1, it is probably the presence of global features that
causes the “instability” problem. If FDM can somehow take “good” care of both
the global (broad) and local (narrow) features, we should be able to improve the
performance of FDM. Here we propose another hybrid method in which the global
and local features are treated separately. That is, one can generate two line lists from
C(t), a coarse line list and narrow band line list, that will result in a correct spectrum
when used with Eq. 1.31. This can be done in two steps: First, FDM is applied to
obtain the global fit of a short part of C'(¢) in terms of the coarse line list, {w,(:), d,(:)},
which generally constitutes of broad poles and can therefore describe well the broad
spectral features (in practice, only the broad poles should be retained). At the second

step FDM is applied to the residual signal,
c) —g w((‘)
Cres(t) = C(t) = Y de it | (2.5)
k

using all the available data, to create the narrow band line list {w”,d\} in the
spectral region of interest. w,(cl) are generally much narrower than w,(:), because by
subtracting the contribution of broad poles in Eq. 2.5 only narrow features will be
left in the residual signal Cies(t). The overall spectrum in the specified frequency

window is then estimated by using both line lists,

d
+> : (2.6)

d(c)
70 (W) ~ Z k

k w,(cc)— — W
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In this approach instability due to the necessity to deal with both the broad and
narrow spectral features does not occur since they are fit separately in two different

steps.

2.2.4 Performance and Problems

All of the above three hybrid methods are quite similar in both the computational
efficiency and robustness, and show only minor differences whenever construction of
a 1D spectrum is of interest. For example, in certain regimes both hybrid methods
FT+FDM and FDM+FT could result in some residual Gibbs oscillations (albeit very
small) which are hard to eliminate completely. Those never occur in the hybrid
FDM+FDM procedure, although in the latter the total number of parameters in the
overall line list is not quite consistent with the total size of the data, i.e. the data
is over-fit. If some poorly converged poles with large amplitudes happen to occur in
the first step, the reconstruction and subtraction step will effectively introduce some
extra noise to the signal. In addition, none of these hybrid methods can provide a line
list which is consistent with the ersatz spectrum obtained, which could be desirable

in many cases.

A major drawback of the hybrid methods actually occurs when we try to gen-
eralize them to the multidimensional cases, where the spectral construction has to
be somewhat more complicated than in the 1D case. Besides, a double-absorption
spectrum cannot be obtained from a purely phase modulated 2D signal by F'T, which
excludes the hybrid methods that require FT from our consideration. To conclude, it
may not be appropriate to take care of global and local features separately, especially

in a multidimensional signal processing.
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2.3 Multi-Scale FDM

In this section, a more consistent method to solve the “instability” problem which
we call Multi-Scale FDM will be presented. As mentioned above, the instability in the
FDM line list may occur because localized basis functions do not describe correctly
the spectral peaks that are broader than the width of the spectral window. To take
into account the global features but avoid the use of a big Fourier basis we need to
add to our narrow band and dense window basis some sparse coarse (i.e., delocalized)
basis functions. Since the broad peaks do not require high resolution we do not need
many of such coarse basis functions. We also want to minimize the number of coarse
basis functions with the condition that the non-localized features that may affect the
local spectral analysis are represented adequately, which can be achieved by choosing

the most efficient coarse basis distributions.

2.3.1 Theory

Given that the farther away from the current window, the less significant the effect
of a broad spectral feature to the local analysis, the coarse basis could be chosen such
that the spacing between the adjacent coarse basis functions and, accordingly, their
bandwidth, monotonically increase with respect to the distance between the center of
the basis function (¢;) and the spectral window of interest. Thus only the features,
which are broad enough to affect the current window, will be captured by the coarse
basis. Here the local density of the basis functions is defined as

2A min
pj = o fmin 27)
Qi1 — @j-1]
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where A@min = 27 /T Mmay is determined by the spacing between the narrow band
Fourier basis functions. The Fourier length should be scaled accordingly to the local
density using M; = p; Mp,,x, which makes the bandwidth of the basis functions con-
sistent with the basis density. For a given small spectral window we can construct a
multi-scale basis, which contains K zyi, narrow band Fourier basis functions localized

in the window and K. coarse basis functions spread over a wide spectral range:
J .
= Y e™i|d,), j=1,2,...,K = Kyin + K, (2.8)

with the Fourier length M; depending on j: M; = Mmax for the narrow band, and

M; = Mpax pj, for the coarse basis functions.

The U matrix representations can then be evaluated in terms of the time signal.
Here we derive an efficient formula for evaluating the off-diagonal matrix elements

[U(p)] .- The corresponding expression for the diagonal ones is the same as that
3i

previously derived in ref. [3]. Using the definition of multi-scale FT basis |¥;) and
|U,;1), Eq. 2.8, and the ansatz of Eq. 1.3 we obtain

Mj—l Mjl*l

[U(p)]jj, _ Z Z ez’nﬂpjein’ﬂpjl ((I)n ‘U(P)q)n,)
AZJ:_Ol I\Zj/:—ol

=Y N e e(n +n' + p)
n=0 n'=0
—1 M/ 1

_ Z Z i(n+n' T(pjel’n T(‘P'I—‘Pj)c(n+ nl +p) X (29)
n=0 n'=0

Unlike the case corresponding to a uniform Fourier basis [3], here M; and M, do not
always equal to each other, which makes this expression a little bit more complicated.
However, using the strategy of ref. [3], we can still simplify the numerically expensive
double sum. First, by substituting [ = n + n’, and assuming M; < M;:, we break it

into three terms,

M;—1 M/ 1 M;—1 M/ 1 Mj/+Mj—2 Mj/—l
> Z > Z+ > Z + > >
n=0 n'= =0 n'= I=M; n'=l—(M;—-1) I=M; n'=l- (M;—-1)
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Then by evaluating analytically the summations over n’, we can replace each term by

single summations. After some manipulations, we obtain

1 Mj—1
(p) - - INTP;
[U ]jj/ T 1 eiT(pjr—¢;) { 7;) € ?c(n—i-p)
Mjl*l
_ eiT(‘Pj’_(Pj) Z einT‘Pj’c(n +p)

n=0
Mj+M;r—2

+ 1 Mj=1)7(0j1 ;) Z ™45 ¢(n + p)
TL:M]‘
Mj/+Mjf2

_ 6iMjIT((PjI *‘pj) Z ein’rgoj C(n + p)} (210)

n=M,

Note that the final result is symmetric with respect to the interchange of indices j
and j' as it should be. Also note, that for M; = Mj; Eq. 2.10 boils down to the
formula previously derived [3]. It can then be rewritten in a compact form, which

can be easily generalized to a multi-dimensional case,

O'(Mjlfl)—}—Mjfl
X > e™ic(n+p) , (2.11)

n:UMj/

(i 1M;1 (31— 5) 4]

[U(p)] -3

i’ S 11— el(@jr—¢;)
-

where S is the symmetrization operator over the subscripts j and j/, as defined in
Eq. 1.24. For the diagonal matrix elements, ¢; = ¢;, the expression is equivalent to

that previously derived [3]:

2M;—2

[UP)], = >0 (= [M; = n = 1)) c(n +p) - (2.12)

Once the U-matrices are available in this new basis, one can solve the generalized
eigenvalue problem Eq. 1.11 to obtain the eigenvalues u; and eigenvectors By. Due

to Egs. 1.12 and 2.8 the latter yield the amplitudes with

Vi =3B, 3 et (213

As pointed out previously in Chapter 1.2.2, given the eigenvectors By, Eq. 2.13 may

not provide the highest accuracy for the coefficients di, especially those corresponding
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to narrow poles wg. A more general expression can be obtained following the same

procedure,

/—d 1= B
k= 1 — e*MaverT'Y Z[ k]]
j
Mayer—1 Mj_l , . .
> Z Z ein T(wk-f-Z’)’)eZ’rLT(pjc(n + n/) ’ (2.14)
n’=0 n=0
where formally v and M,,., are free parameters. This double sum is equivalent to

that in Appendix I (Eq. 2.9) with p = 0 and ¢;; = wy + ¢y and therefore can be

simplified using the result of Eq. 2.10 or, equivalently, Eq. 2.11.

We found by numerical experimentations that Eq. 2.14 improves the accuracy for
the amplitudes, compared to that of Eq. 2.13, if wy, is sufficiently narrow, i.e., |[Im{wy}|
is small. In this case an appropriate choice for the free parameters is Myer = Mmax
and v = —Im{wy} for Im{w,} < 0 and v = 0, otherwise. For broad poles, especially
those captured by coarse basis, their contribution to the signal decays very quickly
and usually they only contribute to the beginning part of the signal. As such, taking
the second half of the signal into account by using Eq. 2.14 will only make the results
less accurate. Therefore, Eq. 2.13 should be used for broad poles. A good criteria to
distinguish “broad” and “narrow” poles would be the smoothing parameter I' used

to plot the ersatz spectrum in Eq. 1.32, which is usually 0.1 ~ 0.2 of F'T resolution.

Fig. 2 shows an example of such a basis set for a particular window together with
the FDM ersatz spectrum obtained using this basis and plotted, intentionally, in a
wide spectral range. As expected, fine features are captured inside the window where
dense and narrow band basis functions are used, and only coarsely resolved features
appear in the region outside this window. Furthermore, the spectral resolution de-
creases smoothly in the directions away from the window, so there are no edge effects
associated with the local spectral analysis. This makes it easier to combine the results

of different windows to construct the overall spectrum. More importantly, with the
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presence of coarse basis, the spectral features outside of the window are represented
with relatively lower resolution, so that the base line inside the window is now very
stable, which means that our first purpose of removing the “instability” problem is

achieved.

Multi-Scale FDM

low resolution
low resolution  high resolution

|
|
I | v
\% \

Q5 | (e O O R R R LTI R A T I

~

FT spectrum

2.40 2.30 2.20 2.10 2.00 ppm
FIG. 2. An example of a multi-scale basis set and the spectrum obtained using this basis
for the same signal used in Fig. 1. Kyin = 10 narrow band and K. = 20 coarse basis func-

tions (indicated by an impulse at each ¢;) were used. The coarse functions are distributed

non-uniformly according to the displacement from the window (see text).
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2.3.2 Some Aspects of Numerical Implementations

A comment must be made on how to calculate the discrete Fourier sums for all
j and j' in Eq. 2.10 efficiently. The first two sums need to be computed only once
for every j. The other two sums depend on both indices j and j', and might seem
numerically expensive. Here we describe an algorithm which scales as M, X Kyin

for all the matrix elements of U® rather than M K2 as one can think. Thus the

win

numerical effort of evaluating the U-matrices in a multi-scale Fourier basis is similar

to that of the original version of FDM.

For convenience, we introduce the notation:

M+M; -1

WPM)y= Y émic(n+p) .
n=M-+1

Since ¢\")

i (Mmax — 1) only depends on ¢;, it can be evaluated once and stored in an

array for later use. Now given g](]’J )(Mmax), one can obtain g](p )(Mj/) recursively for all

Mj < Mpax according to

o (M = 1) = g (M) + Mic(M + )

— MFM=1)10i o (\f 4 M;—1+p).

Finally, another trivial point is that there is no need in evaluating the Fourier
sums in Eq. 2.10 for p = 1, once they have been computed for p = 0 as there is always

a simple relation between these two. For example,

Z e c(n+1) = e 7% Z e c(n) — c(0)| e™M™e(M + 1) .
n=0
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2.3.3 A double-scale Fourier Basis

Our second purpose is to find out the most efficient coarse basis distribution
which would require minimum computational efforts to get similarly reliable result.
We found, again by numerical experiment, that for the simplest realization of a multi-
scale Fourier basis one can consider just two scales with M; = Mp,y, for the narrow
band window basis, and M; = M, < My, for the coarse basis, corresponding to
having two equidistant grids with spacings, A@min = 27/7 Mpnax and Ap, = 27/7M,,
respectively. At first look, this double scale distribution may not sound as well as
the real “multi-scale” basis with smoothly decaying basis density. However, numerical
experiments showed that such a basis distribution is sufficient to get “good” results for
most circumstances, while there may always exist some cases that require a profound

basis distribution.

Unlike the example shown in Fig. 2 which might seem to be a little complicated,
this simplifies the calculation of the U-matrix elements (see Appendix I). Furthermore,
the size of coarse basis can be further reduced (or contracted) by keeping only those
basis functions |¥;) for which no significant peaks appear in a low resolution Fourier
spectrum around ¢;. Numerical implementation of this “adaptive coarse basis” idea
will require pre-applying DF'T or FDM to a short signal to get a low resolution picture.
It is also worth noting that the use of a double scale basis is reminiscent to the hybrid
FDM+FDM, although in the latter the two diagonalizations are decoupled, while in
the more consistent approach of this section only one diagonalization is performed
but using the hybrid double-scale basis. The examples shown in next example section

are all obtained with the double-scale FDM.
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2.3.4 Multi-Scale Fourier Basis Using Complex Grid

There is an even simpler implementation of the multi-scale FDM which does not

require any of the new formula derived previously in this section, in which instead of
(c)

the real frequency grid {¢;} (Eq. 1.18), a list of complex values ¢; " are used. The

real parts are just {¢;}. Let’s Eq. 1.18 are rewritten as,

Mrmax =1 (@)
W,) = Z e g Ime; |D,,) , (2.15)

n=0
Note that if Imgog-c) = 0 this new definition is the same as Eq. 1.18. When Imgpg-c) > 0,
the second exponential acts as a FT weight function, and changes the “effective FT
(o)

length”. Thus adjusting the imaginary part of the complex grid points ¢;” will have

the same effect as directly adjusting the F'T length like what is done in Eq. 2.8. The
(o)

relation between Ime:

;5 and M; is given as,

Mrax =1 (©

Yooet™i = M; . (2.16)
n=0

This equation can be solved analytically by first substituting the summation by a
integral and solve the simplified equation. The result can then be expanded in Taylor

series and approximated by

© T+z—az? 4152 if t > 0.685
Imp:” = (2.17)

7 )

2.82(1 — t) if ¢ < 0.685

where t = M;/Mmax, * = exp(1/t), and M, has the same dependence on basis
distribution as previously defined. With such a definition of multi-scale F'T basis,
we can use the formulas of the single scale FDM by simply substituting the real
grid ¢; by the complex one. This will simplify the implementation of the 2D or
higher dimensional multi-scale FDM. Numerical experiments demonstrated that the
performance of the complex-grid multi-scale FDM is similar to that of the original

implementation of the multi-scale FDM.
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2.3.5 Some Numerical Examples

Fig. 3 shows some spectra obtained with the double-scale basis. The use of a

coarse basis does improve the appearance of the spectrum significantly, even when

very few basis vectors is used. Furthermore, due to the removal of the edge effects by

Multi-Scale FDM
Kwin=16, K=7

Multi-Scale FDM
Kwin=10, Kc=7

FT spectrum

2.8 2.4 2.0

1.6

1.2

ppm

FIG. 3. A comparison of FT and multi-scale FDM ersatz spectra generated by FEq. 1.31.

The overall basis as small as Ky, + K. = 10 +7 = 17 still gives a reasonable spectrum.

Further increase of the window basis to Kyin = 16 leads to an absolutely converged result

in that it is stable and insensitive to the FDM parameters used, such as basis size, window

position etc.
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the latter, the size of the narrow band basis could be very small as well, compared
to the previous single-scale version of FDM. As such, for the example considered
here about K, = 7 coarse basis functions, retained after the contraction procedure,
and Ky, > 10 window basis functions were needed to obtain well converged ersatz

spectra.

The example of Fig. 3 demonstrates the reliability and robustness of the multi-
scale FDM. The next example in Fig. 4 shows that under even more extreme condi-
tions it is still as stable as the Fourier spectrum but can deliver a higher resolution
than both the Fourier spectrum and the previous single-window version of FDM. We
considered the same NMR signal to which, in the region with no genuine NMR lines,
we added artificially some very broad Lorentzian lines to simulate a huge background
spectrum and some very narrow lines. For this extreme case, the single-scale FDM
does not work well even when a quite big window basis is implemented. For example,
for signal length N ~ 2000 and Ky, ~ 200 window basis functions the spectrum
envelop is not reproduced correctly. Moreover, in this case the results appeared to
be quite sensitive to the input parameters, such as a slight shift in the window posi-
tion. While reproducing the background spectrum is not a problem for the Fourier
spectrum it cannot resolve the doublet made out of two narrow, equal in height and
closely spaced Lorentzian lines. Quite surprisingly, the multi-scale FDM with just
Kyin + K. = 4+ 10 = 14 basis functions per window reproduces all the relevant
spectral features quite accurately. Moreover, the doublet is now much better resolved

than in both the single-scale FDM and F'T spectra.

Finally, Fig. 5 presents an IR spectrum. The interferogram contained 4744 data
points that were processed by both FT and multi-scale FDM to generate the absolute
value spectra |I(w)|. The FT spectrum is very hard to interpret and, probably, hard

to quantify by conventional means as the peaks are not quite narrow and both the
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x8
Kyyin=200, K,=0 AN

FDM (1)

K,yin=200, K;=0

Multi-Scale
FDM

FT spectrum

4.0 35 3.0 ppm

FIG. 4. This example shows the spectra of an artificially made signal (see text) pro-
cessed by three different methods, FDM (single-scale FDM), multi-scale FDM and FT. The
spectrum marked with FDM (2) was obtained with the same parameters as FDM (1) but
the position of the window was slightly shifted. The instability in both representing the
background spectrum and resolving the fine features (the doublet) occurs even with Kyin as
large as 200 basis functions (corresponding to 0.88 ppm spectral window). The doublet is
not resolved in the F'T spectrum either due to the uncertainty relation, although FT repro-
duces the spectrum enwvelop correctly. The result obtained by the multi-scale FDM with just
Kyin + K. = 44 10 = 14 basis functions is superb in all respects and required minimal

computational effort.

overlapping effects and the interference with the background are significant. Unlike
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the FT case, the FDM peaks are generally much sharper. Notably and most impor-
tantly, the FDM spectrum is fit by the form of Eq. 1.2, so the parameters of the
peaks (such as the positions, widths and amplitudes) are known. At the same time,
fitting |I(w)| by Lorentzians would be a very challenging project. We also point out
that the overall shape of the spectrum is reproduced well by the multi-scale FDM,

while the single-scale version is very unstable for this signal because of the very big

background.
/mmnmw T~
(a) //W A \\\
/ I
P | .
(b) Multi-Scale FDM /
Kwin=20, Ks=30 - ‘
" ° 200.0 2200.0 4200.0
— e - N A e e 4 “\f\\“\ “/\/ \“Mc‘/\/\
[ T WAN AR TA | 1
‘ Il f \“,‘ | \‘ | ‘ H '\“‘
‘\\ U M'\ |
a |
| ' |
A -
‘ I Iy
1430.0 | 1530.0 1630.0 | om-1

FIG. 5. FT-IR spectrum (a) and an interesting part of the same spectrum processed by
the multi-scale FDM with Ky, + K. =20+ 30 = 50 (b) and by FT (c). The interferogram

contained 4744 data points.
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2.4 Extension to a 2D case

Here we extend the multi-scale Fourier basis to the 2D FDM by generalizing the
1D expressions of Section 2.2 accordingly. The previous formalism of 2D FDM can
be found in Chapter I. A higher than two-dimensional case does not encounter any

particular difficulties and the corresponding expressions are analogous.

To introduce a 2D multi-scale Fourier basis we generalize Eq. 2.8,

=Y 3 &I D g (2.18)

with @; = (1, ¢2;) and M;; being a function of ¢, | = 1,2. A simple and nu-
merically efficient setup could correspond to having two direct-product 2D grids:
{B; = (01j1,925,)} s J1 = 1, Kiwin, with total size Kyin = Kiwin X Kowin, and
{gﬁ’(jc) = (cpgj)l, gpg?z)} . 1 =1, ..., K., with total size K, = K. X K. In each dimen-
sion two independent 1D grids of values {¢,}, i = I, ..., Kiwin, and {(pl(;.l)}, G =
1,..., Kjc have to be implemented, corresponding to the narrow band and coarse
Fourier bases with M; = Mjmax and M; = M., respectively, M. being generally
much smaller than the maximum allowed order M.y = Nimax/2 — 1 of the Krylov
basis in the /-th dimension dictated by the signal length Njmay in this dimension. This

construction allows to easily extend the procedure developed for the 1D multi-scale

FDM to the present case.

By expanding the eigenvectors in the basis {V;},

Tu) = [Bul; [¥5) (2.19)

J

we can convert the two operator eigenvalue problems,
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Uil Yu) = we| Tur) , 1=1,2, (2.20)
into the two matrix generalized eigenvalue problems,
UBi = uxUeBi , [ =1,2, (2.21)

where U;, [ = 1,2, are the shortcuts for the matrix representations of the evolution
operators U; = e % with the eigenvalues uy, = e “* and Uy, the overlap matrix.
By solving these two generalized eigenvalue problems one obtains the frequencies wy;
the associated eigenvectors By, yield by, and T} 4, needed to compute the amplitudes

dklkz by Eq 139,

Tik, = B, UOByy, , (2.22)
Myj;—1 Myj—
blk = Z Blk Z Z e*m‘pﬂc . (223)
@ nl=0 n2=0

Finally, numerical expressions for the matrix elements of U;, U, and U, are
obtained by using the 1D result of Eq. 2.11. Most generally, for any time vector

7= (71p1, T2p2) the matrix elements of U® = =111 ¢=i2m gre given by

01=0,1 -
ZU’Q[MQJITQ(SOQ] _‘P2J)+7r]

X Z —
112( Qo1 — P2
y— 01 —e ( 2j J)

Ul(Mlj’ 1)—|—M1j—1 02(M2j1—1)+M2j—1

X 3 > eic(ii 4 p) , (2.24)

n1=0’1M1j/ nz:UQsz/

ez’al [Myjim1(py 0 —p15)+7]

jj’ 'i7'1 (P11 —¢15)

where S, defines the symmetrization operator over the subscripts [j and [j’ as in
Eq. 1.24. When ¢;; = ¢ Eq. 2.24 is rewritten according to Eq. 2.12. For example,

for ¢1; = 157 we have

eiaz[szng(gij/ —(p2j)-|-7r]

[U(ﬁ)] Y SA’Q Z 1 — (@250 —925)

37’ 02=0,1
02(Myj —1)+Maj—1 2M; ;-2
X > S (i + p)
n2=02My; n1=0

X (Myj = |My; —m = 1), (2.25)
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which can be trivially rewritten for the symmetric case of @9; = @o5. For the case
()Bj = (ﬁj’a
2My;—2 2My;—2
[UP] = > > eMe(ii+p)
JI n1=0 no=0

While the multi-scale basis works very well in 1D FDM, in 2D FDM, due to
the problems described in Chapter I, applying multi-scale 2D FT basis should not
be expected to be all-in-one solution. The preliminary results we obtained with 2D
multi-scale FDM show that the ersatz spectrum obtained with single calculation still
contains many artifacts, though sometimes it does show improvement compared to
the case of single scale 2D F'T basis. Therefore, we will still need to apply either signal
length averaging or pseudo-noise averaging in order to obtain a clean and converged
spectrum. But hopefully, with the multi-scale 2D F'T basis, smaller spectral windows
could be used so that less computational efforts will be needed to acquire similar

results.

2.5 Conclusion and Remaining Problems

In this chapter, we demonstrated that the previous version of FDM may give
an unstable solution under certain circumstances, when the Fourier spectral analysis
can still provide quite meaningful spectra and is quite reliable. It was argued that
the instability of FDM is caused by the use of a narrow band Fourier basis that
is inadequate for representing very broad peaks in the presence of noise. Although
there exist some primitive hybrid methods to obtain a reliable ersatz spectrum, it was

proposed to improve the narrow band basis by including some coarse basis functions
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to represent these broad features in low resolution. The use of such multi-scale Fourier
basis leads to ersatz spectra that are no longer unstable but possess the high resolution
quality of FDM. It provides a line list that accurately fits the spectrum by Lorentzians
according to Eq. 1.31. Furthermore, with the coarse basis, one can use much smaller
spectral windows for the local analysis which, in turn, reduces significantly the overall
basis size per window and therefore the calculation time, as only very small matrices
are to be diagonalized. In fact, the numerical bottleneck in the 1D multi-scale FDM
is the construction of the U-matrices, generally requiring seconds on a small machine
such as Pentium IT 300 MHz PC. Since in 2D (and higher dimensional) FDM the total
basis is the product of the 1D bases, the matrices to be diagonalized are generally
large enough to make the diagonalization step the most time consuming, even with the
multi-scale basis. Due to the cubic scaling of the eigenvalue solvers with respect to the
matrix size, the significant basis reduction by using the multi-scale basis, will reduce
enormously the computational cost of multi-dimensional FDM. At the present paper
only the relevant equations for the 2D multi-scale FDM are given. The corresponding

applications to the multi-dimensional signals will be tested in the near future.

While the multi-scale basis solves the instability problem in 1D FDM, in 2D FDM
the instability problem is much worse. At present, we still need apply either signal
length averaging or pseudo-noise averaging to get rid of artifacts. Precisely how the
multi-scale basis helps to improve the performance of FDM is still not very clear. It
is possible that multi-scale basis helps by improving the structure of matrices and
making them less sigular. If this is true, other methods of removing the signularies
like Signular Value Decomposition should be tried. In 2D FDM, the matrices usually
have a bad structure with many signularities since the number of basis vectors are
usually much more than number of the real peaks and the 2D signal is usually more
noisy. Thus, the structures of the U matrices in 2D case need to be studied in details,

and various methods of removing the signularies should be tried.
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