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 1. Introduction to concept of intermediate valence (IV)
 2. Anderson impurity model
 Fits of χ(T), nf(T), Cp(T), χ’’(ω) to AIM (dominated by local spin fluctuations)
 PES(w) showing large vs. small energy scales
 3. Coherent Fermi liquid ground state:
 Transport, specific heat and Pauli susceptibility   
 De Haas van Alphen and LDA band theory
 Optical conductivity, neutron scattering and the Anderson Lattice
 4. Anomalies
 Slow crossover from Fermi liquid to local moment
 Low temperature susceptibility and specific heat anomalies
 Low temperature anomaly in the spin dynamics
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Intermediate Valence Compounds

 CeBe13 Fermi liquid (FL) YbAgCu4

 CePd3 FL with anomalies         YbAl3

 Ce3Bi4Pt3 Kondo Insulator YbB12

 γ-α Ce Valence transition YbInCu4

Intermediate Valence (IV) = Nonintegral valence

Yb: (5d6s)3 4f13 nf = 1      trivalent
(5d6s)2 4f14 nf = 0       divalent

YbAl3 (5d6s)2.75 4f13.25 nf = 0.75      IV

Ce: (5d6s)34f1 nf = 1 trivalent
(5d6s)44f0 nf = 0     tetravalent

CePd3 (5d6s)3.24f0.8 nf = 0.8 IV

Oversimplified single ion model:

Two nearly-degenerate localized configurations form hybridized w.f.:

a [4f13(5d6s)3> + b [4f14(5d6s)2> where a = √nf and b = √(1 – nf)
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These IV properties are captured by 
Anderson Impurity Model (AIM)Basic underlying physics:

Highly localized 4f13 orbital surrounded 
by a sea of conduction electrons

Nearly degenerate with 4f14 orbital
Energy separation: Ef

Strong on-site Coulomb interaction U 
between 4f electrons; 4f12 orbital at 
energy Ef + U where U >> V, Ef

Hybridization V between 
configurations: conduction electrons 
hop on and off the 4f impurity 
orbital. Hybridization strength 
Γ = V2ρ where ρ is the density of 
final (conduction) states.

Correlated hopping: 
when Γ ~ Ef << U then 
hopping from 4f14 to 4f13 is allowed
but hopping from 4f13 to 4f12 is 
inhibited by the large value of U. 

Classic correlated electron problem!

e-h pairs
↓

Although intended for dilute alloys, 
(e.g. Lu1-xYbxAl3),  because the spin 

fluctuations are local, the AIM describes 
much of the physics of periodic IV 
compounds.
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Key predictions of Anderson Impurity model:
Energy lowering due to hybridization:

kBTK ~εF exp{-Ef/[NJ V2 ρ(εF)]}  ~ (1 – nf) NJ V2 ρ(εF)
Kondo Resonance: Narrow 4f resonance at the Fermi level εF.

(Virtual charge fluctuations yield low energy spin fluctuations.)
Contributes to the density-of-states (DOS) as ρf(εF) ~ 1/TK.

Mixed valence due to hybridization (nf < 1)
Spin/valence fluctuation: localized, damped oscillator with characteristic energy 

E0 = kBTK :        χ’’~ χ (T) E Γ/((E-E0)2 + Γ 2)
Universality:  Properties scale as T/TK,  E/kBTK,  μBH/kBTK

High temperature limit: LOCAL MOMENT PARAMAGNET
 Integral valence:     nf  → 1     z = 2+nf = 3    Yb 4f13(5d6s)3

 Curie Law:   χ → CJ/T    where  CJ = N g2 μB
2 J(J+1)/ 3 kB J = 7/2 (Yb)

 Full moment entropy:    S → R ln(2J+1)
 CROSSOVER  at Characteristic temperature TK

Low temperature limit:     FERMI  LIQUID
 Nonintegral valence (nf < 1)  Yb 4f14-nf (5d6s)2+nf

 Pauli paramagnet:  χ(0) ~ μB
2 ρf(εF)

 Linear specific heat:  Cv ~ γ T     γ = (1/3) π2 ρf(εF) kB
2

All approximately 
valid for periodic 
IV metals.
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 Q-dependence: In YbInCu4 (Lawrence, Shapiro et al, PRB 55 (1997) 14467) no dependence of Γ or 
E0 on Q and only a weak (15%) dependence of χ’ on Q.

 Q-independent, broad Lorentzian response ⇒

 Primary excitation is a local, highly damped spin fluctuation (oscillation) at 
characteristic energy E0 = kBTK

Lawrence, Osborn et al
PRB 59 (1999) 1134

YbInCu4
Magnetic scattering
Smag vs. E at two incident 
energies Ei

E

Spin fluctuation spectra YbInCu4

 Lorentzian power spectrum    

 S(E) ~ χ’ E P(E) = χ’ E (Γ/2)/{(E - E0)2 + Γ2}
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Fits to the AIM 
YbAgCu4: Good quantitative fits

to the T dependence of χ, nf, γ
and to the low T neutron 
spectrum

O     data
___  AIM

Lawrence, Cornelius, Booth, et al

Two parameters (Ef, V) chosen to fit 
χ(0) and nf(0) 

(plus one parameter for background 
bandwidth W, chosen to agree with 
specific heat of nonmagnetic 
analogue LuAgCu4)
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Comparison to AIM
YbAl3:  Semiquantitative

agreement

AIM parameters

(Chosen to fit χ(0), nf(0) and 
γ(LuAl3))

W = 4.33eV
Ef = -0.58264eV
V = 0.3425eV
TK = 670K

Cornelius et al
PRL 88 (2002) 117201

The AIM predictions evolve more slowly
with temperature than the data 
(slow crossover between the Fermi liquid and the 

local moment regime)
and there are low temperature anomalies in the
susceptibility, specific heat and the neutron
spectrum.
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Comparison to AIM (continued)
YbAl3 Spin dynamics: Neutron 
scattering (Q- averaged)

At T = 100K the neutron scattering 
exhibits an inelastic (IE) 
Kondo peak:

χ’’(E) = Γ E / ((E- E1)2 + Γ2)

representing the strongly damped local  
excitation. For YbAl3, E1/kB = 550 K 
which is of order TK.

This Lorentzian is still present at  6 K 
where experiment gives

E1 = 50 meV and Γ = 18 
meV
while the AIM calculation gives 

E1 = 40meV and Γ = 22meV
(Semiquantitative agreement)

In addition, there is a new peak (low 
temperature anomaly) at 32 meV.

Lawrence, Christianson et al, unpublished data
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Binding Energy (eV)

The AIM prediction for photoemission
(Gives the relationship between

large and small energy scales)

Primary 4f1 → 4f0 emission at 
–Ef ~ (-2.7 eV in CeBe13)

Hybridization width 1 eV = NJ V2 ρ(εF)
{implies exp[-Ef/ (NJ V2 ρ(εF))] = 0.066} 

Kondo Resonance near Fermi energy εF

w/ width proportional to TK.

Qualitative agreement, but there is a long-
standing argument about the details: 

E.g. the relative weight in the KR is larger 
than expected, suggesting the 4f electrons 
are forming narrow bands near εF.

The temperature dependence is also not as 
predicted, (perhaps “slow crossover” )

Many problems arise from the high surface 
sensitivity of the measurement.Lawrence, Arko et al PRB 47 (1993) 15460
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TRANSPORT BEHAVIOR OF IV COMPOUNDS

 The AIM predicts  a finite resistivity
 at T = 0 due to unitary scattering 
 from the 4f impurity.

 In an IV compound, where the
 4f atoms form a periodic array,
 the resistivity must vanish.
 (Bloch’s law)

 Typically in IV compounds
 ρ ~ A (T/T0)2

 This is a sign of Fermi Liquid
 “coherence” among the spin 
 fluctuations.

YbAl3 ρ vs T2

↓

Ebihara et al
Physica B 281&282 (2000) 754
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C/T vs. T2 for YbAl3

Ebihara et al
Physica B 281&282
(2000) 754

FERMI LIQUID BEHAVIOR
A Fermi liquid is a metal where, despite the strong electron-electron interactions, 
the statistics at low T are those of a free (noninteracting) Fermi gas, 
but with the replacement m → m* (the effective mass).
The specific heat is linear in temperature C = γ T

γ = {π2 kB
2 NA Z/(3 h3 π2 N/V)2/3)} m*

For simple metals (e.g. K):   γ = 2 mJ/mol-K2

m* = 1.25 me

For YbAl3:               γ = 45 mJ/mol-K2

m* ~ 25 me
→ “Moderately HEAVY FERMION” compound

γ = 45 mJ/mol-K2

The Fermi liquid also exhibits
Pauli paramagnetism:

YbAl3: χ(0) = 0.005 emu/mol
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The AIM is qualitatively good (and sometimes quantitatively, e.g. YbAgCu4) 
for χ (T), Cv(T), nf(T) and χ’’(ω;T)

essentially because these quantities are dominated by spin fluctuations, which are highly local.

BUT: to get the correct transport behavior and the coherent Fermi Liquid behavior
⇒ Theory must treat the 4f lattice

Two theoretical approaches to the Fermi Liquid State
Band theory: Itinerant 4f electrons: Calculate band structure in the LDA.  

One-electron band theory (LDA) treats  4f electrons as itinerant; 
it does a good job of treating the 4f-conduction electron hybridization.

It correctly predicts the topology of the Fermi surface.
But:  Band theory strongly underestimates the effective masses!

LDA:  m* ~ me dHvA:  m*~ 15-25 me

And, it can’t calculate the temperature dependence.

Anderson Lattice Model:  Localized 4f electrons
Put 4f  electrons, with AIM interactions (Ef, V, U), on each site of a periodic lattice.

This loses the details of the Fermi surface
but gets the effective masses and the T-dependence correctly.

Bloch’s law is satisfied for both cases.
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De Haas van Alphen and the Fermi surface
Figures from Ebihara et al,  J Phys Soc Japan 69 (2000) 895

The de Haas van Alphen
experiment measures 
oscillations in the 
magnetization as a 
function of inverse 
magnetic field.

The frequency of the oscillations is 
determined by the areas S of the 
extremal cross sections of the Fermi 
surface in the direction 
perpendicular to the applied field.

M = A cos(2πF/H)
F = (hc/2 πe) S

The temperature dependence of 
the amplitude determines the 
effective mass m*

A = 1/sinh(Qm*T/H)
where Q is a constant
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For IV compounds LDA gives the correct extremal areas!

One-electron band theory (LDA) treats  4f electrons as itinerant.
It correctly predicts the topology of the Fermi surface as observed by dHvA.

But:  LDA strongly underestimates the effective masses!

LDA badly overestimates the 4f band widths and consequently strongly underestimates the 
effective masses:

LDA:  m* ~ me
dHvA:  m*~ 15-25me
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Large effective masses in YbAl3
Ebihara, Cornelius,   Lawrence,  Uji and Harrison

cond-mat/0209303

The effective masses:
Band 14 electron branch β:   23 me
Band 13 hole branch ε:         17 me
Band 13 electron branch α:   13 me

High field dHvA shows that the effective masses for H//<111> 
decrease substantially for H > 40T.  This field is much smaller 
than the Kondo field BK = kTK/gJμB required to polarize the f 
electrons, but is of order kBTcoh/μB.

A field of this magnitude also 
suppresses the low temperature 
susceptibility anomaly.
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ANDERSON LATTICE

Anderson Impurities on a periodic lattice
Level crossing: Narrow 4f band at energy Ef below the Fermi level εF 

hybridizing, with matrix element V, with 
wide conduction band whose density of states is ρ.  

With no Coulomb correlations (U = 0): hybridization/level repulsion 
Band structure with a hybridization gap Δ = NJV2 ρ.  

With Coulomb correlations (U ≠0): U inhibits free hopping 
Coherent band structure has hybridized bands near εF 
but renormalized parameters:   Veff = (1-nf)1/2 V and Ueff = 0. 
Hybridization gap Δeff with indirect gap of order TK << Δ
Fermi level in high DOS region giving large m*.

The structure renormalizes back to the 
bare energies with increasing 
temperature:

For very low T << TK, fully hybridized 
bands.

For T >> TK, local moments uncoupled 
from band electrons.
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Optical conductivity
BEST EVIDENCE FOR THE HYBRIDIZATION GAP AND ITS RENORMALIZATION WITH 

TEMPERATURE

High temperature:
Normal Drude behavior from 

scattering 
from local moments:

σ’(ω) = (ne2/mb){τ / (1 + τ2ω2)}
mb: bare band mass, τ is the relaxation

YbAl3

Okamura et al, J Phys Soc Japan 73 (2004) 2045

Low temperature:
IR absorption peak from vertical (Q = 0) 

transitions across hybridization gap
Very narrow Drude peak.  Both m and τ

renormalized:      mb → λ mb = m*       
τ → λ τ = τ*

C
R
O
S
S
O
V
E
R
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Neutron Scattering 

Both interband (across the gap) and intraband (Drude-like scattering near the 
Fermi energy) are expected in the neutron scattering, but in this case excitations at 

energy transfer ΔE can have finite momentum, transfer Q.

 

ΔE
Q

εF(KI)

qBZ

εF(IV FL)

 E
(q

)

 

q

The intergap excitations, whose intensities are 
proportional to the joint (initial and final) 
density of states (DOS), should be biggest 
for zone boundary Q which connects 
regions of large 4f DOS. The energy for 
this case is the indirect gap.  For smaller 
Q, the spectrum should be more like the 
optical conductivity (Q = 0), i.e. on the 
scale of the direct gap.



19

Neutron scattering YbAl3
(Q-resolved)

The low temperature magnetic scattering 
shows two features:

1) A broad feature near E1 = 50 meV, which 
energy is essentially kBTK..  This is
most intense for zone boundary Q.

2) A narrow feature near E2 = 30 meV, the 
energy of the deep minimum in the optical 
conductivity.  This is independent of Q.
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Neutron scattering YbAl3: Q dependence

This plot integrates over the E1 = 50 meV
intergap excitation at various positions in the 
QK, QL scattering plane.  Peak intensity 
occurs near 

(QK,QL)  = (1/2, 1/2) 
i.e. at the zone boundary, 

This Q-dependence is as expected for intergap
transitions in the Anderson lattice

This plot integrates over Q at QL = 0.  
The band of constant color near 
E2 = 32 meV means that the excitation 
is independent of Q along the QK
direction. 

Such an excitation does not occur in the 
theory of the Anderson lattice.  It 
corresponds to a localized excitation 
in the middle of the hybridization gap 
– like a magnetic exciton.Christianson et al, PRL 96 (2006) 117206
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Conclusions

Properties of IV compounds such as the susceptibility, specific heat, temperature-
dependent valence and Q-integrated neutron scattering line shape, which are 

dominated by highly localized spin fluctuations, fit qualitatively and sometimes 
quantitatively to the Anderson impurity model.

Properties that are highly sensitive to lattice order – d.c. transport (resistivity), optical 
conductivity, de Haas van Alphen – require treatment of the lattice periodicity.  Band 

theory gets the shape of the Fermi surface correctly, but can’t get the large mass 
enhancements or the temperature dependence.  Anderson lattice theory gets the mass 

enhancements and the temperature dependence but forsakes the Fermi surface 
geometry.  It predicts key features of the optical conductivity and the neutron 

scattering, in particular that there will be a hybridization gap, with intergap transitions 
strong for momentum transfer Q at the zone boundary.

However, there are many anomalies: the susceptibility and specific heat are enhanced 
at low T relative the models, and evolve more slowly with temperature than expected 

based on the AIM. In addition, there appears to be a localized excitation in the 
hybridization gap that is also not predicted by the models.


