Dark Matter Detection from Milky Way Satellites

Louie Strigari
UC Irvine
Center for Cosmology
Fermilab, Hunt for Dark Matter
5.10.2007

Collaborators: James Bullock, Juerg Diemand, Manoj Kaplinghat, Michael Kuhlen, Savvas Koushiappas, Piero Madau
Census of Milky Way Satellites (Circa 2007)

<table>
<thead>
<tr>
<th>Name</th>
<th>Year Discovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC</td>
<td>1519</td>
</tr>
<tr>
<td>SMC</td>
<td>1519</td>
</tr>
<tr>
<td>Sculptor</td>
<td>1937</td>
</tr>
<tr>
<td>Fornax</td>
<td>1938</td>
</tr>
<tr>
<td>Leo II</td>
<td>1950</td>
</tr>
<tr>
<td>Leo I</td>
<td>1950</td>
</tr>
<tr>
<td>Ursa Minor</td>
<td>1954</td>
</tr>
<tr>
<td>Draco</td>
<td>1954</td>
</tr>
<tr>
<td>Carina</td>
<td>1977</td>
</tr>
<tr>
<td>Sextans</td>
<td>1990</td>
</tr>
<tr>
<td>Sagittarius</td>
<td>1994</td>
</tr>
<tr>
<td>Canis Major</td>
<td>2003</td>
</tr>
<tr>
<td>Ursa Major I</td>
<td>2005</td>
</tr>
<tr>
<td>Willman I</td>
<td>2005</td>
</tr>
<tr>
<td>Ursa Major II</td>
<td>2006</td>
</tr>
<tr>
<td>Bootes</td>
<td>2006</td>
</tr>
<tr>
<td>Canes Venatici I</td>
<td>2006</td>
</tr>
<tr>
<td>Canes Venatici II</td>
<td>2006</td>
</tr>
<tr>
<td>Coma</td>
<td>2006</td>
</tr>
<tr>
<td>Leo IV</td>
<td>2006</td>
</tr>
<tr>
<td>Hercules</td>
<td>2006</td>
</tr>
<tr>
<td>Leo T</td>
<td>2007</td>
</tr>
</tbody>
</table>

Louie Strigari, UC Irvine

Fermilab, Hunt for Dark Matter 2007
Assume galaxies are spherically-symmetric and in equilibrium

$$\sigma^2_{\text{los}}(R) = \frac{2}{I_*(R)} \int_R^\infty \left(1 - \beta \frac{R^2}{r^2}\right) \frac{\nu_* \sigma^2_r r dr}{\sqrt{r^2 - R^2}}$$
Line-of-sight velocity dispersion

Fornax

Louie Strigari, UC Irvine
Fermilab, Hunt for Dark Matter 2007
Constraints on masses of satellites

Halo masses at about 600 pc are constrained to within 20%. Maximum circular velocities not constrained.

- Strigari, Bullock, Kaplinghat ApJL 2007

Strigari, Bullock, Kaplinghat, Diemand, Kuhlen, Madau 2007
Applications: Indirect Dark Matter Detection

Flux = Particle Physics x Astrophysics

$$\frac{dN_\gamma}{dAdt} = \frac{1}{4\pi} \mathcal{P}[(\sigma v), M_\chi, dN_\gamma/dE] \mathcal{L}(\rho_s, r_s, D).$$

$$\mathcal{L} = \int_0^{\Delta_\Omega} \left\{ \int_{\text{LOS}} \rho^2[r(\theta, D, s)] ds \right\} d\Omega,$$

- Galactic center: astrophysical issues, backgrounds [e.g. Bergstrom, Ullio, Buckley 1999; Hooper & Dingus 2004; Profumo 2005]
- Dark substructures [Savvas Koushiappas talk]

Louie Strigari, UC Irvine

Fermilab, Hunt for Dark Matter 2007
Constraints on Astrophysical Parameters

LS, Koushiappas, Bullock, Kaplinghat PRD 2007

Louie Strigari, UC Irvine
Fermilab, Hunt for Dark Matter 2007
Fluxes are ‘boosted’ with substructure

Two order of magnitude boost?

$\mathcal{L}(M) = [1 + B(M, m_0)] \tilde{\mathcal{L}}(M)$.

Boost factor

LS, Koushiappas, Bullock, Kaplinghat PRD 2007
Orders of magnitude more surviving dark substructures in simulations that satellites galaxies in the local group. The ‘missing satellites’ problem. [Kauffmann et al. 1993, Klypin et al. 1999, Moore et al. 1999]

Earliest forming halos
Largest before accretion

Earliest Forming
Largest Before Accretion
Dark subhalos
MW satellites

Mass < 0.6 kpc \([M_\odot]\)

LS, Bullock, Kaplinghat, Diemand, Kuhlen, Madau 2007

Louie Strigari, UC Irvine
Fermilab, Hunt for Dark Matter 2007
Conclusions and Outlook

- Strong mass constraints on satellite galaxies from stellar kinematics
- Gamma ray fluxes may be ‘boosted’ by up to two orders of magnitude
- Fluxes from new dwarfs may be similar, or even larger
- New constraints on solutions to the missing satellites problem
- Further applications: Can distinguish between cores/cusps with astrometry [Strigari, Bullock, Kaplinghat ApJL 2007]

Louie Strigari, UC Irvine

Fermilab, Hunt for Dark Matter 2007