Electricity

- **Voltage (V)** depends on the distance between charges.
- **Current (C)** depends on the number of moving charges.
- **Resistance (R)** depends on how much moving charges are slowed down.
Electricity

• Voltage (V) depends on the distance between charges.
Electricity

- Voltage (V) depends on the distance between charges.
- Current (C) depends on the number of moving charges.
Electricity

- **Voltage** (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- **Resistance** (R) depends on how much moving charges are slowed down.
Electricity

• **Voltage** (V) depends on the distance between charges.
• **Current** (C) depends on the number of moving charges.
• **Resistance** (R) depends on how much moving charges are slowed down.

• A formula which describes how voltage, current and resistance depend on each other is:

\[V = C \times R \quad \text{or} \quad C = \frac{V}{R} \]
Electricity

- **Voltage (V)** depends on the distance between charges.
- **Current (C)** depends on the number of moving charges.
- **Resistance (R)** depends on how much moving charges are slowed down.

A formula which describes how voltage, current and resistance depend on each other is:

\[V = C \times R \quad \text{or} \quad C = \frac{V}{R} \]

Example:
- If the current is \(C = 2 \) and the resistance is \(R = 100 \), how large is the voltage (V)?
Electricity

• **Voltage** (V) depends on the distance between charges.
• **Current** (C) depends on the number of moving charges.
• **Resistance** (R) depends on how much moving charges are slowed down.

A formula which describes how **voltage**, **current** and **resistance** depend on each other is:

\[V = C \times R \quad \text{or} \quad C = \frac{V}{R} \]

Example:
• If the **current** is \(C = 2 \) and the **resistance** is \(R = 100 \), how large is the **voltage** (V)?
Electricity

- Simple circuit to show how current depends on voltage

Resistance -- tries to stop current!
Current -- charges flowing through wire
Voltage – separates charges
Electricity

- Simple circuit to show how current depends on voltage:

Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electricity

Simple circuit to show how current depends on voltage:

Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>
Electricity

- Simple circuit to show how current depends on voltage:

Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
</tr>
</tbody>
</table>
Electricity

Simple circuit to show how current depends on voltage:

Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>40.</td>
<td>185.</td>
</tr>
</tbody>
</table>
Electricity

- Simple circuit to show how current depends on voltage:

Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>40.</td>
<td>185.</td>
</tr>
<tr>
<td>80.</td>
<td>260.</td>
</tr>
</tbody>
</table>
Electricity

- Simple circuit to show how current depends on voltage:

![Simple circuit diagram]

Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>40.</td>
<td>185.</td>
</tr>
<tr>
<td>80.</td>
<td>260.</td>
</tr>
<tr>
<td>120.</td>
<td>317.</td>
</tr>
</tbody>
</table>
Electricity

- Simple circuit to show how current depends on voltage:

Table

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40.0</td>
<td>182.0</td>
</tr>
<tr>
<td>80.0</td>
<td>254.0</td>
</tr>
<tr>
<td>120.0</td>
<td>315.0</td>
</tr>
</tbody>
</table>
Electricity

- Simple circuit to show how current depends on voltage:

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40.0</td>
<td>182.0</td>
</tr>
<tr>
<td>80.0</td>
<td>254.0</td>
</tr>
<tr>
<td>120.0</td>
<td>315.0</td>
</tr>
</tbody>
</table>
Electricity

• Series circuit of three light bulbs:

• Will bulbs be brighter or dimmer?
• What will happen if we remove one bulb?

Voltage – Pushes charges (current) through wires
Current – charges flowing through wire
Resistance tries to stop current!
Electricity

- Parallel circuit of three light bulbs:

Will bulbs be brighter or dimmer?

What will happen if we remove one bulb?

Voltage – Pushes charges (current) through wires

Current – charges flowing through wire

Resistance tries to stop current!
Electricity

• Combination circuit of three light bulbs:

 • Which bulb will shine the brightest?
 • What will happen if we remove bulb A?
 • What will happen if we remove bulb C?

Voltage – Pushes charges (current) through wires

Current – charges flowing through wire

Resistance tries to stop current!
Electricity

Van De Graaff Generator

How charge is carried up to top
Electricity

- Capacitor Boom

Capacitor

Circuit

5600 μF

on/off
Electricity

- LN2 Jumping Ring
Electricity

Summary:

- **Voltage** (V) depends on the distance between charges.
- **Current** (C) depends on the number of moving charges.
- **Resistance** (R) depends on how much moving charges are slowed down.