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We have developed a consistent theory of the Heisenberg quantum antiferromagnet in the disordered
phase with a short range antiferromagnetic order on the basis of the path integral for spin coherent states.
In the framework of our approach we have obtained the response function for the spin fluctuations for
all values of the frequency ω and the wave vector k and have calculated the free energy of the system.
We have also reproduced the known results for the spin correlation length in the lowest order in 1/N .
We have presented the Lagrangian of the theory in a form which is explicitly invariant under rotations
and found natural variables in terms of which one can construct a natural perturbation theory. The
short wave spin fluctuations are similar to those in the spin wave theory and they are on the order
of the smallness parameter 1/2s where s is the spin magnitude. The long-wave spin fluctuations are
governed by the nonlinear sigma model and are on the order of the smallness parameter 1/N , where
N is the number of field components. We also have shown that the short wave spin fluctuations must
be evaluated accurately and the continuum limit in time of the path integral must be performed after
the summation over the frequencies ω. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

The theory of the two-dimensional Heisenberg antiferromagnet (AF) has attracted a great deal of
interest over the past several years in connection with the problem of the spin fluctuations in the
copper oxides [1]. We especially call the attention of the reader to the reviews of Manousakis [2],
Auerbach [3], and Sachdev [4] in which a general situation of the quantum AF (QAF) has been
elucidated. The main point of interest was the QAF for spin 1/2 in a disordered state where the
average spin on the lattice site equals zero. The main investigations have used two models of the spin
short range order (SRO): (1) spin liquid type SRO order, which was proposed by Anderson [5] and
developed by many other authors [6]; (2) antiferromagnetic SRO (AFSRO) which was also proposed
by many other authors, including Chakravarty et al. [8] and, from a different standpoint, Pines [7].
In this paper, we will concentrate on the theory of the QAF with AFSRO.

The most advanced approach to the description of the QAF with AFSRO is based on the path
integral for the spin coherent states [10, 11]. The modern approach to the QAF with AFSRO is based
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on papers of Haldane [9], in which he obtained the action of the QAF in an explicitly rotational
invariant form, in the lowest order in the ferromagnetic fluctuations, and deduced, in the same
approximation, the long-wave (LW) sigma model. He also investigated the role of the topological
term in the action.

The sigma model for the case of the QAF is the continuum model for the unit vector n(t, r), n2 = 1
in the 1 + 2 time and space dimensions [14, 15]. We note that the three-dimensional sigma model
is not a renormalizable theory. Very interesting and important results were obtained by Chakravarty
et al. [8], Hasenfratz and Nieder mayer [13], and Sachdev and co-workers [12]. For example, when
the correlation length ξ was calculated, a very skillful treatment was required in order to absorb
some divergent quantities in the parameters of the sigma model such as the spin rigidity ρs and the
velocity of sound cs . These parameters were calculated independently in the framework of the spin
wave theory at the temperature T = 0 [16].

It is more or less obvious that, for an unrenormalizable field theory in the continuum, it is
not possible to include all divergences in some simple observable quantities. The recent result of
Hasenfratz [17] on the calculation of the correlation length, in which he goes beyond the continuum
approximation, confirms this point of view.

A consistent theory of the spin fluctuations of the QAF with AFSRO for all space scales (not
only for LW lengths) was, up to now, absent. In our opinion, it is not simple to develop the ideas
suggested by Haldane [9] to the full scale theory. It is necessary to overcome some nontrivial technical
difficulties. This is precisely the topic of this paper. As a result we can describe spin fluctuation of
the QAF with AFSRO in 1 + 2 dimensions at any temperature and for any space and time scales of
the spin fluctuations in a regime of weak coupling with respect to the expansion parameters 1/2s
and 1/N . This is the main physical result of this paper.

The spin correlation function, which is a very important physical characteristic of the QAF, was
calculated in all values of the wave vector k and the frequency ω. This is a new result. As k approaches
the antiferromagnetic vector this result converges to known LW length results [2]. An expression
for the free energy of the system, valid not only at low temperatures T [12] but also at T on the
order of the exchange constant J , when short-wave (SW) spin excitations are essential, was also
obtained.

This paper has the following structure.

(1) A form of spin coherent states (Appendix A) invariant under rotations was proposed. It
allows the derivation of the Berry phase and of the Lagrangian of the QAF in forms which are
explicitly invariant under rotations (Section 2.2).

(2) Variables Ω and M, which describe AF and ferromagnetic spin fluctuations, have been
introduced. The Faddev–Popov trick allows the fluctuation of these fields to be made independent in
the leading approximation and a convenient quadratic form for perturbation theory (Section 2.3) in
the parameters 1/2s and 1/N to be obtained.

(3) We have integrated the action over the M field in the leading approximation in 1/2s, and
we have obtained (Section 2.6) some sort of quantum lattice rotator model (QLRM) [2, 8]. We
shall call this model the spin-rotator (SR) model. It can be useful in the calculations in the leading
approximation in 1/2s.

(4) Since it is not possible to construct a perturbation theory based on the time continuum,
a method of calculations at the final time step was developed (Section 3.1). After that we have
calculated the free energy (Section 3.2) and the first order corrections to the leading approximation
(Section 3.3).

(5) The separation of scales was performed on the basis of the Pauli–Villars transformation.
As a result, we have obtained the LW nonlinear sigma model with additional contributions from SW
fluctuations. In the lowest order in 1/N , these SW contributions can be included in the renormalization
of the spin stiffness and the velocity of sound. In higher orders, this is not possible.
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2. BASIC TIME CONTINUUM APPROXIMATION

2.1. Magnetic Fluctuations and 1/2s Approximation

We consider the spin system which is described by the following Heisenberg Hamiltonian:

Ĥ Hei = J

2

∑
l,l ′=〈l〉

Ŝl · Ŝl ′ , Ŝl · Ŝl = s(s + 1), (1)

where Ŝl are the spin operators; the index l runs over a two-dimensional square lattice; the index l ′

runs over the nearest neighbors of the site l; J > 0 is the exchange constant which, since it is positive,
corresponds to the AF spin interaction; and s is the magnitude of spin. The most efficient method of
dealing with a spin system is based on the representation of the generalized partition function (GPF)
Z or the generating functional of the spin Green functions (GF) in the form of the functional integral
over spin coherent states z, z∗ [11, 18] or over the unit vector n, n2 = 1, on a sphere [2]:

Z = Tr[e−β Ĥ ], Z =
∫

· · ·
∫ ∞

−∞
Dµ(n) exp(A(n)),

(2)

Dµ(n) =
∏
τ l

2s + 1

2π
δ
(
n2

τ l − 1
)

dnτ l ,

where β = 1/T, T is the temperature, τ is the imaginary time, and A(n) is the action of the system.
In the continuum approximation, which is valid in the leading order in 1/2s, the expression of the
action A(n) is simplified [11]

A(n) = −
∫ β

0

∑
l

[Lkin(τ, l) + H(τ, l)] dτ, (3)

B(τ, l) = 〈n| ∂

∂τ
|n〉 = is(1 − cos θτ l)ϕ̇τ l , (4)

Lkin(τ, l) = B(τ, l), H(τ, l) = Js2

2

∑
l ′=〈l〉

nτ l · nτ l ′ ,

where B(τ, l) is the Berry phase, θ, ϕ are the Euler angles of the unit vector n = (cos ϕ sin θ, sin ϕ

sin θ, cos θ ), and ϕ̇τ l is the time derivative of this angle. The kinetic part of the action Lkin is highly
nonlinear and it is not clear how to proceed with it consistently. Essential transformations of the Berry
phase of the QAF were made by Haldane [9] but they do not have a final character (see also [2–4]).

Further in this paper we use the idea of the near AF order. Following this fundamental hypothesis,
we split our square lattice into two AF sublattices a and b. In sublattice a the spins S are directed
along some axis Ω, and in sublattice b they are directed in the opposite direction. In this way, we
obtain a new square lattice with two spins a and b in the elementary cell with a volume b2 = 2a2,
where a is the space distance between spins. The axes of this new lattice are rotated by 45◦ with
respect to the primary axes. We assume that this AF order is only defined locally and any global
AF order is absent. As a result, the summation over the lattice sites l and l ′ can be expressed as a
summation over l ∈ a and l ′ ∈ b. Thus, the Lagrangian Lkin is a sum of two such Lagrangians, one
for sublattice a and another for sublattice b, which are expressed in terms of two vectors na(τ, l) and
nb(τ, l ′), respectively. The Hamiltonian H retains its form if l ∈ a and l ′ ∈ b but J/2 → J because
the double summation is then absent.
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In this way we have two spins in each AF elementary cell which are defined in different space
positions l and l ′. This circumstance is not convenient for subsequent nonlinear changes of variables.
One can introduce new variables na,b(τ, l) which are both defined at sublattice a (or at the center of
the AF elementary cell).

For that we pass to the Fourier image na,b(τ, k) of the original vectors na(τ, l) and nb(τ, l ′), where
the momentum vector k runs over the AF Brillouin band. We can return to the space representation
and consider the coordinate ρ as a continuum variable. As a result we have the definition

na,b(τ,ρ) =
√

1/Ns

∑
k

eik·ρna,b(τ, k), (5)

where 2Ns is the total number of sites in the space lattice. Of course, we assume periodic boundary
conditions. We can now place the variable ρ on sublattice a (or in a specific center of the AF
elementary cell). One can check that the Lagrangian Lkin will be the same in terms of the new
variables na,b(τ,ρ) ≡ na,b(τ, l). In the same manner one can change the measure of integration (2)
and write it out in terms of na,b(τ, l). The Hamiltonian H retains its simple form in the momentum
representation. To be valid, this procedure supposes that the action can be expanded in a power series
in the vectors na,b [9].

2.2. Invariant Lagrangian

The form of the Lagrangian Lkin is not invariant under rotations although the physical problem
itself is invariant. The reason for this situation is explained in detail in Appendix A.1. In Appendix A.2
an invariant form of the Lagrangian Lkin is proposed (84). For the two sublattices a and b it has the
form

Lkin = −is na · [ma × ṁa] − is nb · [mb × ṁb]. (6)

Equation (6) for Lkin is valid for any choice of the unit vectors ma,b if they satisfy the conditions
m2

a,b = 1, na,b · ma,b = 0. For the problem of the quantum AF with two sublattices we can choose
the following expression for the vectors ma,b

ma,b = nb,a − xna,b√
1 − x2

, x = na · nb. (7)

Substituting these expressions for ma,b into Eq. (6) we get invariant forms under rotation for Lkin

and also for H (see (4))

Lkin = B(τ, l) = is(ṅaτ l − ṅbτ l) · [naτ l × nbτ l]

1 − naτ l · nbτ l
,

(8)
H = Js2

∑
l ′=〈l〉

naτ l · nbτ l ′ , naτ l ∈ a, nbτ l ∈ b.

Now we can introduce new variables which are more convenient: Ω(τ, l) and M(τ, l). These variables
realize the stereographic mapping of a sphere

na,b = ±Ω(1 − M2/4) − [Ω × M]

1 + M2/4
, (9)
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where Ω2 = 1 and Ω · M = 0. In terms of these variables the total Lagrangian L�M = Lkin + H
has the final form

Lkin = 2 is Ω̇ · M
1 + M2/4

, H = Js2
∑
l ′=〈l〉

Hll ′ ,

(10)
Hll ′ = {Ω · Ω′[(1 − M2/4)(1 − M′2/4) − M · M′] +Ω · M′Ω′ · M}(1 + M2/4)−1(1 + M′2/4)−1,

where Ω ≡ Ωτ l ,Ω′ ≡ Ωτ l ′ , M ≡ Mτ l , and M′ ≡ M′
τ l . This Lagrangian determines the quadratic

Lagrangian and nonlinear terms which give the amplitudes of the magnon scatering in the tree
approximation which is valid in the lowest order in 1/2s. After this change of variables the measure
of integration Dµ(n) (2) becomes

∏
τ l

(2s + 1)2(1 − M2/4)

2π2(1 + M2/4)3
δ(Ω2 − 1)δ(Ω · M) dΩ dM, (11)

where the index l runs over the AF (double) lattice cells.

2.3. Gauge Transformation

The variable Ω is responsible for the AF fluctuations and the variable M for the ferromagnetic ones.
The ferromagnetic fluctuations are small according to the smallness parameter 1/2s and therefore one
can expand the LagrangianLΩM (10) in powers of M. The vector of the ferromagnetic fluctuations M
plays the role (up to a factor 2s) of the canonical momentum conjugate to the canonical coordinate Ω.
The term, in the Berry phase, of first order in M coincides (after change of variables), with previous
results of Haldane [9] (see also [2–4]).

From Eq. (10) one can easily extract the quadratic part, Lquad, of the total Lagrangian,

Lquad = 2 is (M · Ω̇) + Js2
∑

l ′
[Ω2 − Ω · Ω′ + M2 + M · M′]. (12)

We stress again that this quadratic form is very close to the 1988 result of Haldane [9], but is different
to the extent that Haldane’s result involves the variable L = [M × Ω]. As a result we have a quite
simple quadratic form.

The Lagrangian Lquad (12) is very simple but the measure Dµ(n) (11) is not simple due to the
presence of two delta functions. Therefore we cannot simply perform the Gaussian integration over
the fields Ω and M.

To solve this problem we shall use the method of Lagrange multipliers together with the saddle
point approximation [14, 15] to eliminate the delta function δ(Ω2 − 1),

δ(Ω2 − 1) = (2π )−1
∫ ∞

−∞
exp(Aλ) dλ,

(13)
−Aλ =Lλ = (iλ + cµ)(Ω2 − 1),

where λ is a Lagrange multiplier and cµ is a constant which will be fixed with the help of the saddle
point condition [14, 15].

To eliminate the delta function δ(Ω · M) we shall use a form of the Faddev–Popov trick which
was proposed in [20]. Let us consider the integral
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I ( f ) =
∫

f (M)δ(Ω · M) dM, (14)

where f (M) is an arbitrary function of M. Let us insert in the right hand side of (14) the identity

1 = Zga

∫
exp

(
−1

2
ϕ B̂gaϕ

)
dϕ√
2π

, Z2
ga = det(B̂ga), (15)

where B̂ga is a positive number or a positive definite operator for some multidimensional general-
ization. After changing the orders of integration over M and ϕ we can make the change of variables
M: M → M − Ωϕ. After that, due to the delta function, we have ϕ = (Ω · M) so that the delta
function disappears from integral (14),

I ( f ) = Zga

∫
f (Mtr) exp(Aga) dM/

√
2π,

(16)

−Aga = Lga = 1

2
(Ω · M)B̂ga(Ω · M),

where Mtr ≡ M −Ω(Ω·M). With the help of identity (16) we can remove the delta function δ(Ω·M)
from measure (11). As a result we must substitute M → Mtr in the Lagrangian LΩM (10) and add
the gauge fixing Lagrangian Lga due to the additional exponential in (16). It is convenient to choose
the Lagrangian Lga in the form

Lga = Js2
∑
l ′∈〈l〉

[(Ω · M)2 + (Ω · M)(Ω′ · M′)]. (17)

Such choice removes the major dependence on Ω from the Lagrangian (12) which appears due to
substitution M → Mtr. We can also replace Mtr → M in the first term of the Lagrangian Lquad (12)
due to the identity (Ω · Ω̇) = 0. In this way, the expression (12) for Lquad is valid in the leading order
in the small parameter 1/2s.

The final expression for the GPF of the QAF is

Z =
∫

· · ·
∫

exp(A(Ω, M, λ))Zga Dµ((Ω, M)Dµ(λ),

Dµ(Ω, M) =
∏
τ l

(2s + 1)3(1 − M2/4)

(2π )3(1 + M2/4)3
dΩ(τ, l) dM(τ, l), (18)

Dµ(λ) =
∏
τ l

2 dλ(τ, l)/
[
(2s + 1)(2π )1/2

]
.

Here Dµ(Ω, M, λ) = Zga Dµ(Ω, M)Dµ(λ) is the measure of integration, and the action A(Ω, M, λ)
is determined by the total Lagrangian Ltot = LΩM + Lga + Lλ.

2.4. Properties of the Basic Approximation

One can change to the q = (ω, k) momentum representation (ω is the frequency, k is the wave
vector) and write out the total quadratic part of the Lagrangian in the matrix form
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Lquad(q) = sX∗
q�̂(q)Xq , X∗

q = (Ω∗
q , M∗

q ),

�̂(q)Xq =
(

P ′
k, ω

−ω, Qk

) (
Ωq

Mq

)
, P ′

k = Pk + cµ,

(19)
cµ = µ2

0/2J , Qk = J (1 + γk), Pk = J (1 − γk),

J = jsz, γk = (1/2)(cos(kx a) + cos(kya)).

Here Xq is a two component vector field which combines the vector fields Ωq and Mq ; the constant
cµ (13) is expressed through the constant µ0 which is the mass of the Ω field in the lowest order of
perturbation theory. One can invert the 2 × 2 matrix �̂(q) and get the bare Green function (GF) Ĝq

of the Ωq and Mq fields

Ĝq = 1

2s
(�̂(q))−1 = 1

2sLq

(
Qk, −ω

ω, P ′
k

)
(20)

Lq = ω2 + ω2
0k, ω2

0k = (
1 − γ 2

k

)
J 2 + (1 + γk)µ2

0

/
2,

where ω0k is the primary magnon frequency in the paramagnetic phase. Below we shall use the
notations GΩ

q = G11
q , Gd

q = G21
q , Gu

q = G12
q , and G M

q = G22
q for the matrix elements of the matrix

GF Ĝq .
First let us discuss the parameter of perturbation theory. One can see from the explicit form of

the Lagrangian (10) that the spin wave nonlinearity of the theory is due to the term Mtr and its
modifications. Its average value 〈M2

tr〉 is

(N − 1)
∑

q

G M
q = (N − 1)T

2s

∑
ω=2πnT,k

Pk

ω2 + ω2
0k

, (21)

where N = 3 is the number of components of the Ω field. The summation over ω is obtained by
standard methods [15] and we have

〈
M2

tr

〉 = (N − 1)

2s

∑
k

Pk

2ω0k
(1 + 2n0k) = (N − 1)

4s

{
CM0, T � J
(T/J )CM∞, T � J .

(22)

Here, n0k = (exp(ω0k/T )−1)−1 is the Planck function, and summation over k means the normalized
integration over the AF Brillouin band. The constants CM0 and CM∞ are defined by the relations

CM0 =
∑

k

√
1 − γk

1 + γk
= c0 − c1 = 0.65075,

(23)

CM∞ =
∑

k

2

1 + γk
= 1.48491,

where all sums of type (23) are calculated by the following method

cn =
∑

k

γ n
k√

1 − γ 2
k

,
∑

k

f (γk) =
∫ 1

0
f (ε)ρ(ε) dε,

(24)

ρ(ε) =
∑

k

δ(ε − γk) = 4

π2
K (1 − ε2).
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Here K (x) is the complete elliptic integral of the first kind. In the same manner one can calculate
the average at different time and space points.

〈Mi (τ + δ, 1 + r)Ω j (τ, 1)〉 = i

4s
δi jε(δ)

∑
k

exp(ik · r − |δ|ω0k)

1 − exp(−βω0k)
. (25)

Here ε(δ) is the sign function: ε(δ) = 1 for δ > 0, ε(δ) = −1 for δ < 0. For r = 0 and δJ � 1 we
have an explicit expression

〈Mi (δ)Ω j (0)〉 = i

4s
δi jε(δ)

{
1, T � J
TJ /C0, T � J .

(26)

From Eqs. (22) and (25) we clearly see that the smallness parameter of perturbation theory is 1/2s
at low temperatures T � J and T/(2sJ ) at high temperatures T ≥ J . Thus, perturbation theory is
working when 1/2s is a small parameter and the temperature is not high. We remind the reader that
this is just the applicability condition of the spin wave theory.

Now we can consider the saddle point condition for the λ field 〈Ω2〉 = 1 which is the basic
constraint (BC) of the theory which determines its phase state:

1 = 〈Ω2〉 = N
∑

q

G�
q = N

2s

∑
k

Qk

2ω0k
(1 + 2n0k). (27)

The right hand side of Eq. (27) contains two terms. The first term Qk/2ω0k is responsible for the
quantum fluctuations of the Ω field. The second term Qkn0k/ω0k is responsible for the classical
thermal fluctuations of the Ω field. The role of these two terms is quite different. The quantum
fluctuations are small with respect to the smallness parameter of perturbation theory 1/2s and in
the leading approximation they can be neglected. The thermal fluctuations can be considered in
the continuum approximation for which Qk � 2J and ω2

0k � c2
0sk2 + µ2

0, where c0s is the primary
velocity of sound and c2

0s = 2J 2s2za2/h2. The integration over the two-dimensional momentum k
can be easily performed [12]. The integration over the angle is trivial, and the integration over the
modulus |k| is performed if we introduce a new variable of integration x = βω0k. As a result we have
the BC

1 = − T N

2π Js2
ln

(
1 − e−µ0/T

) � − T N

2π Js2
ln(µ0/T ). (28)

The coefficient before the logarithm in this equation is always small when the regime of weak
coupling is valid. At small temperatures T �J this is obvious. At the temperature T � J this
coefficient coincides with the parameter of perturbation theory (22) and also must be considered
as small. This means the logarithm in (28) must be negative and large is modulus. This leads to
the condition µ0/T � 1 which justifies the last simplification in (28). As a result we have the well
known [2, 8, 12] zero order expression for µ0

µ0 = T exp(−2π Js2/T N ). (29)

The quantity ξ0 = hc0s/µ0 is the correlation length [2, 12]. This relation can be easily obtained if we
find Green function GΩ(k) = ∑

ω GΩ
q and change to coordinate representation for it. From Eq. (29),

the very important conclusion follows: in the regime of the weak coupling the correlation length ξ is
much larger than the lattice constant a. This conclusion enables the scale separation for the problem
of disordered QAF [8] to be accomplished.
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To close the theory it is helpful to define the polarization operator �(q) of the Ω field

Aλquad = −1

2

∑
q

λ∗(q)�(q)λ(q), (30)

which is the dressed loop, and the GF of the λ field is �(q)−1. In the lowest approximation �(q) is
simply the loop from two GF’s GΩ

�0(q) = 2N T
∑

q ′
GΩ(q ′)GΩ(q − q ′). (31)

Using the GF GΩ(q) from (20) we can perform the summation over ω and have the expression for
the simple loop.

�0(q) = N

4s2

∑
k′

(1 + 2n1)
Q1 Q2

ω1ω2

[
ω2 + ω1

ω2 + (ω2 + ω1)2
+ ω2 − ω1

ω2 + (ω2 − ω1)2

]
,

(32)
Qi ≡ Qki , ωi ≡ ω0ki , ni ≡ n0ki ,

where the index i := 1, 2, corresponding, respectively, to the momenta k1 ≡ k′ and k2 ≡ k − k′.
The main contribution in 1/2s in (32) is from the thermal fluctuations even at low temperatures
T , because the integral strength of the thermal fluctuations does not depend on the temperature. It
is fixed by the saddle point condition (27), in spite of the temperature entering into this condition.
The explicit form for �0(q) may be obtained in two limiting cases hq � T and hq � T , where
q2 = ω2 + c2

s k2. In the first case the momentum k ′ ∼ T/cs � q, and we can separate the integration
over k′ and put k′ = 0 in all places in (32) affected by the factor n1 ≡ n(k′). The result is extremely
simple

�0(q) = 4GΩ(q) = 2J (1 + γk)

s
(
ω2 + ω2

0k

) , q � kT , (33)

where kT = T/c0s . At small q � c0s/a a similar result was obtained in [12]. Notice that it exceeds the
quantum contribution in (32) �0(q) = N/4q in the large parameter 16sJ /Nq. The second limiting
case hq � T lies in the purely continuum region. It corresponds to the pure classical two-dimensional
case: ω = 0 and ω′ = 0. Integration over k′ can be easily performed as the result for �0(k) coincides
with [12] up to the normalization factor

�0(k) = 8N T

πs2q
√

q2 + 4µ2
0

ln


q +

√
q2 + 4µ2

0

2µ0


 , (34)

where q = c0sk.

2.5. The Spin Correlation Functions

The approach of this paper enables us to find the spin correlation functions for all values of ω and
k. The dynamical spin susceptibility is determined by the relation

χ (ω, k)δi j = − i

h

∫ ∞

0
dτ

∑
1

Tr{[Ŝi (τ, l), Ŝ j (0, 0)] exp(β(F − Ĥ ))} exp(iωτ − iak · 1), (35)
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where F = −T ln(Z ) is the free energy, and the wave vector k runs without limitations over
the Brillouin band. It is well known that the dynamical spin susceptibility χ (ω, k) coincides with
the temperature GF continued on the imaginary frequency ω. It can be calculated on the basis of the
functional integral (18)

χ (ω, k)δi jδ(ω − ω′)δ(k − k′) = − is2

h
〈n∗

i (Ω, M, ω′, k′)n j (Ω, M, ω, k)〉. (36)

Here, the unit vector n(Ω, M, ω, k) is a function of the fields Ω(τ, l), M(τ, l) according to (9);
the brackets 〈. . .〉 mean averaging over the Ω(τ, l), M(τ, l) fields according to (18). Equation (36)
reduces the problem of the calculation of the spin GF to the problem of the calculation of the averages
of the Ω and M fields. In the lowest order in 1/2s it is sufficient to use the lowest order relation

n(Ω, M, τ, l) � exp(ial · qAF )Ω − [Ω × M], (37)

where Ω ≡ Ω(τ, l), M ≡ M(τ, l), and qAF = (π/a, π/a) is the AF vector (9). Substituting the
vector n from (37) into (36) we get the dynamical spin susceptibility as a sum of two terms χ (ω, k) =
χA(ω, k) + χF (ω, k). The spin susceptibility χA(ω, k) is responsible for the AF fluctuations. It is
proportional to the GF GΩ

q analytically continued and shifted by the AF vector qAF

χA(ω, k) = − Js2z(1 + γk∗ )

2
(
ω2 − ω2

0k∗ + iωδ
) , (38)

where k∗ = k − qAF , and ω0k is the magnon frequency (20). For the spin susceptibility χF (ω, k)
we have the loop expression

2s2
∑

q ′
[GΩ(q ′)G M (q − q ′) − Gu(q ′)Gd (q − q ′)]. (39)

In the leading approximation in 1/2s the first term gives the main contribution in the same manner
as in (31) when the contribution from the Planck fuction n1 was dominant

χF (ω, k) � −
∑

k′
n1

Q1 P ′
2

2ω1ω2

[
ω2 + ω1

ω2 − (ω2 + ω1)2 + iωδ
+ ω2 − ω1

ω2 − (ω2 − ω1)2 + iωδ

]
, (40)

where the notation is the same as in (31). In the case of q = √
ω2 − c2

s k2 � kT the expression (40)
is substantially simplified on the basis of the idea of dominant small k ′ � kT ,

χF (ω, k) � −2s2

N
G M (q) = − Js2z(1 − γk)

N
(
ω2 − ω2

0k + iωδ
) . (41)

For the case q ≤ kT the expression for χF (ω, k) is not so simple and we give as the result the limit
µ � ω, ωk � kT

χF (ω, k) = − a2T 2

πc2
s q

ξ (2) + iε(ω)
a2T

16πc2
s |q|2 (2πθ (q2)ω(4ω − 3|q|) + θ (−q2)T |q|ξ (2)), (42)

where ξ (n) is the Riemann zeta function, and ε(ω) is the sign function. The two terms in (42)
which are proportional to ξ (2) are generated by the integral which is cut at large k by the Planck
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distribution function n(k′). The ferromagnetic spin susceptibility (43) is suppressed in comparison
with the antiferromagnetic one (38) by the parameter (qa)2.

2.6. The Spin-Rotator Model

In the leading approximation in 1/2s the Lagrangian is quadratic in the M field and one can
integrate over this field and obtain the final action for the Ω field and the Lagrange multiplier λ,

LΩλ = s(Ω̇Q̂−1Ω̇) + s(ΩP̂ ′Ω) + iλ(Ω2 − 1), (43)

where the quantities Q̂ and P̂ ′ are defined in the k representation in (20). As a result of this integration
the M field becomes a function of the Ω field: M = Q̂−1Ω̇. One can easily recognize in (21) the
Lagrangian of a QLRM kind [8]. However, this model is different from the standard model due to
the momentum dependence of the kinetic term in Eq. (21). We shall call these kinds of models SR
models. The SR model describes a quantum antiferromagnet in the limit s → ∞. The QLRM is
also well defined and does not contain any divergences. It allows all calculations to be performed
accurately because all physical quantities are well defined in the framework of this model.

3. BEYOND THE APPROXIMATION OF THE TIME CONTINUUM

3.1. Basic Approach

When we try to construct the perturbation corrections to the basic approach discussed in the
previous section we meet a fundamental difficulty: the integrals arising from the GF (20), over
the frequency ω, are not well defined. This is obvious from the consideration of the average
〈Mi (τ + δ, l)Ω j (τ, l)〉. The result essentially depends on the time shift δ (25) which reflects the
phase space nature of the Ω and M variables: the GF Gu,d (q) ∼ ω−1 at large ω. Moreover some
doubts may arise that the calculation of the quantity 〈M2

tr 〉 was indeed correct. Actually, at low
temperature

〈M2
tr 〉 ∼

∑
k

∫ π/�

−π/�

dω

2π

J (1 − γk)

ω2 + ω2
0k

= CM0, (44)

where � is the time step in the accurate definition of the GPF and the interval (−π/�, π/�) gives
the one-dimensional Brillouin band for the final time step �. The limit � → 0 gives a correct value
of this average. At first sight this limit is trivial because the integral over ω in (44) is well defined.
Suppose that we were not so accurate and the numerator of (44) contains in fact a small correction
J (1−γk) ⇒ J (1−γk)+�ω2. If now we at first calculate the integral (44) with this numerator and
after that pass to the limit � → 0 the result will be different: CM0 → CM0 + 1. This example should
convince the reader that for a spin system the continuum limit of the path integral for the GPS (2)
must be performed with proper accuracy: at first it is necessary to formulate the theory at finite �

and one can put � = 0 only after the calculation of all integrals over ω has been done. Notice also
that the accurate version of the GPF, discrete in time (2), is necessary when we calculate the free
energy.

We obtain now, on the basis of the results of Appendix A, an accurate expression for the quadratic
part of the action. Instead of expression (3) for the action A(n) we shall use a more accurate expression

A(n) = −
Nτ∑
j=0

∑
l

�[Lkin( j, l) + H( j, l)], (45)
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where τ = j� and �Nτ = β. According to the results of Appendix A, Lkin( j, l) consist of two parts
Lkin = Lmod + Lpha. The first term is purely real and the second term is purely imaginary.

According to Eq. (80) the Lagrangian Lmod can be written for two sublattices a and b in the form

�Lmod = −s ln[(1 + n
¯ a · na)(1 + n

¯ b · nb)/4], (46)

where na = na( j, l), n
¯ a = na( j + 1, l), n

¯ b = nb( j + 1, l), and nb = nb( j, l). It is assumed that the
vectors n

¯ a , na , n
¯ b, and nb are functions of the dynamical variables Ω and M according to Eq. (9).

The Lagrangian Lpha is not so simple and according to Appendix A (86) it is

�Lpha = − s

2
ln

(
Ta T

¯
∗
a Tb T

¯
∗
b

T ∗
a T

¯ a T ∗
b T

¯ b

)
, (47)

where the quantity Ta,b is defined in (88) and has a rather complicated form. The expansion of �Lpha

in powers of the M field contains only odd powers of M.
The Hamiltonian H(n) can be obtained on the basis of Eq. (77) for the matrix element of the spin

operator S if we substitute them in the Heisenberg Hamiltonian

H(n) = Js2
∑
l ′∈〈l〉

S(n
¯
, n) · S(n

¯
′, n′), (48)

where n
¯

= na( j +1, l), n = na( j, l), n
¯
′ = nb( j +1, l ′), and n′ = nb( j, l ′). All these vectors are also

functions of the dynamical variables Ω and M according to Eq. (9). The vector S(n
¯
, n) is determined

by the relation

S(n
¯
, n) = 〈n

¯
|Ŝ|n〉

〈n
¯
|n〉 = n

¯
+ n − i[n

¯
× n]

1 + n
¯

· n
. (49)

This quantity transforms indeed as a vector under rotations according to the discussion in Appendix A.
Expanding the Lagrangians Lmod (46), Lpha (47), and the Hamiltonian (48) in powers of the vector

M up to second order we get

�Lkin = s[1 − Ω
¯

·Ω + M2 − M
¯

· M + i(Ω
¯

· M − Ω · M
¯

)],
(50)

H = Js2
∑
l ′∈〈l〉

[Ω
¯

·Ω − Ω · Ω′ + M
¯

· M + M · M′ − i(Ω
¯

· M − Ω · M
¯

)],

where the regular quantities Ω and M are defined for the value j, l of the arguments; the underlined
ones are defined for j +1, l; those with a prime are defined for j, l ′; the ones which are simultaneously
underlined and have a prime are defined for j + 1, l ′.

According to the analysis performed in Section 2.3 it is necessary to add to the Lagrangian (50)
the gauge Lagrangian Lga generalizing (17) in the case of a finite time step

�Lga = s[(Ω · M)2 − (Ω
¯

· M
¯

)(Ω · M)] + �Js2
∑
l ′∈〈l〉

[(Ω
¯

· M
¯

)(Ω · M) + (Ω · M)(Ω′ · M′)]. (51)

This Lagrangian Lga cancels most of the interaction between the Ω and M fields.
In this step we can change to the q = (ω, k) representation

X(q)) =
√

2/Nt

∑
j,l

exp(ibk · 1 − i�ω j)X( j, l),
(52)

ω = 2πT j, k = (2πma/bNa, 2πmb/bNb),
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where Nt = Nτ Ns, −(Nτ − 1)/2 < j < (Nτ − 1)/2, and −(Na,b − 1)/2 < ma,b < (Na,b − 1)/2,

we choose Nτ , Na , and Nb as odd numbers, Ns = Na Nb is the number of sites on one sublattice,
and j, ma, mb are natural numbers.

Now one can write the action in the form A(Ω, M) = ∑
q Lquad(q) where the Lagrangian Lquad(q)

is given in (19) but the matrix �̂(q) acting on Xq = (Ωq , Mq ) is now different

�̂(q) =
(

�Ω(q), �u(q)

−�u(q), �M (q)

)
,

cω = cos(ω�)

sω = sin(ω�)
(53)

�M (q) = uω + �J (cω + γk), �u(q) = sω(1 − �J ),

�Ω(q) = uω + �J (cω − γk) + �µ2
0

/
2J , uω = 1 − cω.

Inverting the matrix �̂(q) we get the GF generalizing (20) in the case of a finite time step �

Ĝq = 1

2s L̄(q)

(
�M (q), −�u(q)

�u(q), �Ω(q)

)
,

(54)

L̄(q) � (
1 − �J + �µ2

0

/
4J

)[
2uω + �2ω2

0k

]
,

where the quantities Qk, P ′
k, and the bare frequency ω0k were defined in (20). At small ω when

ω� � 1, if we neglect small terms of order �J and �µ2
0/J , the matrices �̂(q) and Ĝq are replaced

(up to normalization factors � and �−1) by their continuum analogues (19) and (20).
Of course, the difference between the continuum expressions (19) and (20) for �̂(q) and Ĝq and

the precise values (53) and (54) are only essential for the intermediate steps of the calculations.
We want to stress that the amplitudes of the magnon scattering in the skeleton approximation are
determined by the continuum action (18) and the continuum Green function (20) only.

At first we demonstrate that the simple calculation of the averages performed in Section 2.4 was
not in fact done with the required accuracy. The result at low T �J is:

〈Mi M j 〉 = δi j (1 + c0 − c1)/4s,
(55)

〈M
¯ i M j 〉 = δi j (c0 − c1)/4s.

This calculation was performed with formulae similar to (21), (25), and (27), but expression (54)
was used for the GF Ĝ, and summation over ω was restricted by Nτ terms. The tricks necessary to
carry out the calculation are discussed in Appendix C. Notice, that the presence of the term uω in the
numerator of the GF (54) leads to the difference of the underlined and non-underlined averages. This
difference is due to the contribution of large ω ∼ π/�. In particular the average 〈M2

tr 〉 calculated
in (22) coincides in fact with the average 〈M

¯ tr · Mtr 〉 but the actual value of 〈M2
tr 〉 is different and

differs from the result of (22) by the constant (N − 1)/4s. All other averages, 〈M
¯ i M ′

j 〉, 〈Ω′
i M¯ j 〉,

〈Ω
¯ iΩ j 〉, and so on, can be calculated in a similar manner. We stress that the result crucially depends

on time τ or τ + �.

3.2. Free Energy

After the formulation of the theory for a finite time step � one can calculate the GPF and the
free energy of the QAF in the paramagnetic phase. We can perform the calculation in the leading
approximation in 1/2s. The free energy has three contributions as it follows from Eq. (18) for the
GPF Z : FAF = −T ln(Z ) = FΩM + Fλ + Fga. In the lowest approximation in 1/2s, ZΩM , Zλ, and
Zga are powers of determinants. The explicit form of these determinants follows from (50), (53), and
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(51) and (30) and (31)

FΩM = T N Ns

2

∑
ωk

ln[L̄(q)],

(56)

Fga = −T Ns

2

∑
ωk

ln[2s Q̄(q)], Fλ = T Ns

2

∑
ωk

ln[s2�0(q)],

where all notation was given in (53). Let us consider these three free energies separately. One can
check that FΩM has a finite limit when � → 0, �Nτ = β. Fga and Fλ do not have finite limits when
� → 0, �Nτ = β separately, but their sum has a finite limit.

Consider at first Fλ. It may be written in the form Fλ = Fλl + Fλh ,

Fλl = T Ns

2

∑
ωk

ln[�n(q)], Fλh = T Ns

2

∑
ωk

ln[s2�∞(q)],

where �n(q) = �0(q)/�∞(q), �∞(q) = 4GΩ(q) is the polarization operator at large frequencies
ω � T (33) and the GF GΩ(q) is taken from Eq. (54). The summation over ω in the equation for Fλl

is convergent because the function ln[�n(q)] tends to zero at large frequencies ω as 1/ω2. Therefore
the summation over ω can be extended to infinity in the limit � → 0. It is reasonable to combine
the free energy Fλh with Fga

δF = Fλh + Fga = T Ns

2

∑
ωk

ln[2sGΩ(q)/Q̃(q))] = −T Ns

2

∑
ωk

ln[L̄(q)] = − 1

N
FΩM . (57)

The summation over the frequencies ω for FΩM can be performed as in [21] and we have the total
free energy FAF = ((N − 1)/N )FΩM + Fλl , where FΩM and Fλl are

FΩM = −N NsJ /2 + N Ns

∑
k

{ω0k/2 + T ln[1 − exp(−ω0k/T )]},

(58)
Fλl = T Ns

2

∑
ωk

ln

[
s
(
ω2 + ω2

0k

)
�0(q)

2J (1 + γk)

]
,

where the polarization operator �0(q) is defined in (32). In this formula we neglect a small contri-
bution of the order µ2/J 2.

The first term in the free energy FAF represents the free energy of the ordered antiferromagnet,
which consists of the ground state energy and the free energy of the magnon gas with two degenerate
degrees of freedom.

The temperature dependent part of the free energy (58) at low temperatures T �J is proportional
to FAF ≈ Ns T 3/J . This contribution has two origins: one from FΩM and the other one from Fλl .

3.3. Perturbative Corrections

In this section we present the result of the calculation of corrections to the mass operators of the
Ω and M fields. The detailed analysis of such corrections is far beyond the scope of this paper. We
restrict ourselves to the lowest order of perturbation theory in 1/2s. In this case these corrections can
be presented as a renormalization of the initial quadratic Lagrangian (50). It is necessary to have the
Lagrangian Lmod and the Hamiltonian H up to fourth order in the field M and the Lagrangian Lpha

up to third order.
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From Eq. (46) for Lmod we have

�L(4)
mod = s{2K 2 − (M2)2 − M2M

¯
2 + 2K (M2 + M

¯
2 − 2M · M

¯
)

− 2(Ω · M
¯

− Ω
¯

· M)2}/8, K = 1 − Ω ·Ω
¯
. (59)

From Eq. (47) for Lpha we have

�L(3)
pha = isU [(Ω · M

¯
)M

¯
2 − (Ω

¯
· M)M2 − 2U (1 − K )(Ω · M

¯
− Ω

¯
· M)(M2 + M

¯
2

− 2(M · M
¯

))]/2 + 2isU 3(Ω · M
¯

− Ω
¯

· M)3/8, U = (1 + Ω ·Ω
¯

)−1. (60)

The expression for the Hamiltonian H (48) depends on the scalar products of the fields Ω,Ω
¯
,Ω′,

Ω
¯

′, M, M
¯
, M′, M

¯
′. The term of fourth order in M is rather cumbersome and we will not present

its explicit form. We only note that its evaluation is a purely algebraic technical problem. For its
derivation it is enough to substitute the expression (9) for the vectors na,b in Eq. (49) for the matrix
element of the spin operator Ŝ. After that the result must be substituted into the expression for the
Hamiltonian H (48). After expanding this expression in powers of the field M up to fourth order we
get H(4).

At this step one can perform the averaging of the Lagrangians L(4)
mod, L(3)

pha, and the Hamiltonian
H(4) over the fields Ω and M. We observe that the averaging of the fourth and higher powers of
the Ω field is a little more sophisticated. It requires taking into account the fluctuation of the λ

field in the skeleton approximation. To avoid this complication we have given the result in the 1/N
approximation where this complication is not essential.

The effective kinetic Lagrangian and the Hamiltonian in the leading approximation in 1/2s are

�Lkin = s[a0(1 −Ω ·Ω
¯

) + b0(M2 − M · M
¯

) − ie0(Ω · M
¯

−Ω
¯

· M)],

H = Js2
∑
l ′∈〈l〉

[a1(1 − Ω ·Ω
¯

) + a2(1 − Ω ·Ω′) + a3(1 − Ω′ ·Ω
¯

) + b1M2 + b2M · M
¯

(61)

+ b3M · M′ + b4M′ · M
¯

− ie1(Ω · M
¯

− Ω
¯

· M) − ie2(Ω′ · M
¯

− Ω
¯

· M′)],

where the notation is the same as in (50), and the constants a0, . . . , e2 are

ai = a0
i + gαi , bi = b0

i + gβi , ei = e0
i + gγi ,

a0
0 = 1, b0

0 = 1, e0
0 = 1, a0

1 = −1,

a0
2 = 1, a0

3 = 0, b0
1 = 0, b0

2 = 1, b0
3 = 1, b0

4 = 0,

e0
1 = −1, e0

2 = 0, α0 = 2, β0 = (3 − c0 + c1)/2,

γ0 = (7 − c0 + c1)/4, α1 = 2(1 + c1 − c2),

α2 = 3 + 8/π2 − 3c0 + 2c1 + c2, (62)

α3 = −4/π2 + 2c0 − 2c1 − c2,

β1 = (5 − 12/π2 + c1 − c2)/2,

β2 = (−4 + 8/π2 + c0 − 5c1 + 4c2)/2,

β3 = (2 − 24/π2 − 3c0 + c1 + 2c2)/2, γ2 = 1,

β4 = 3/π2, γ1 = (−6 + 16/π2 + 9c0 − c1 − 8c2)/4,
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where g = (N − 1)/4s, i := 0, 1, 2, 3. The reason why the number of the components N enters in
the effective coupling constant as N − 1 is as follows. The short range fluctuations are directed
perpendicularly to the long wave fluctuations and their number of independent components is N −1.

Now one can write out the effective quadratic form for the Lagrangian (61) in the ω, k representa-
tion and find the GF which can be given in the form (54) with the quantities �i (q) for i :=Ω, M, u, d
obtained from Eq. (61),

L̄(q) = (
e2

0 + �J x1
)[

2(uω) + u2
ω�J x2 + �2ω2

k

]
,

(63)
ω2

k = J 2
[
e−2

0 a23(1 − γk) + µ2/(J 2b1234)
]
(b12 + b34γk),

where ai j = ai + a j , bi j = bi + b j , b1234 = b12 + b34, and the explicit form of the coefficients x1,
x2 follows from (61). From (9), (54), and (63) one can find the spin correlation function up to this
order in 1/2s. For that it is necessary to take into account nonlinear corrections to Eq. (37) which
follow from (9) and also corrections to the GF in the framework of this formula.

We shall give the explicit result for the correlation radius up to this order in 1/2s on the basis
of Eq. (27). The contribution of different frequencies ω and momenta k in this BC relation can
be separated into two parts. The first part is the high frequency and momentum part. To calculate
this contribution it is enough to take the GF GΩ(q) in the bare approximation (54) because this
contribution is of the order 1/2s. The second contribution which is proportional to the distribution
function nk can be considered in the continuum approximation but with 1/2s corrections taken into
account,

GΩ(q) � 1

2a2�

χ−1
⊥

ω2 + ω2
k

, ω2
k = c2

s k2 + µ2, (64)

where c2
s = e−2

0 a23b1234J 2a2/x, χ⊥ = ρ̄s/c2
s , and ρ̄s = Js2a23. Now, instead of Eq. (27) we have

(N/4sρ̄s)
∑

k

nk

ωk
= R, R = 1 − g(1 + c0 + c1). (65)

The factor R includes the direct SW renormalizations. Performing the integration in the same manner
as in (28) we have

µ = T exp(−2πρs/T N ), ρs = ρ̃s R, ξ = hcs/µ. (66)

The actual temperature dependence of the factor in front of the exponential changes (T → J ) if we
take into account the LW fluctuations in the next order in 1/N [12].

4. SEPARATION OF SCALES: DESCRIPTION OF LONG-WAVE FLUCTUATIONS

When the correlation length ξ is much larger than the lattice constant a one can separate the
LW and SW spin fluctuations. If we are interested in the LW spin fluctuations we can construct an
effective LW theory with some cut-off. In our case this theory is the sigma model (see for example
[12]). The LW theory with a cut-off is well defined at least in the sense of perturbation theory but the
results depend on this cut-off. This dependence on the cut-off is totally artificial. It may be absorbed
into some observable quantities. It is not easy to consistently perform this program if the theory is
nonrenormalizable as in our case. Another option is to take into account additional contributions
to the LW theory which cancel the dependece on the cut-off and introduce the dependence on the
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observable quantities or on natural parameters of the theory such as the exchange constant J . Our
treatment of this problem has a qualitative character and we only sketch a possible approach to it.

The fluctuations of the M field are SW and the GF G M (q), Gu,d (q) are regular in the LW limit.
Therefore the separation of scales is actually important for the Ω field or the GF G�(q). This dressed
GF GΩ(q) determines the action of the LW sigma model. This action is universal and can easily be
obtained from the SR Lagrangian (43) or from the GF (54) by the naive LW limit [4]

Lcont = χ⊥
2

[
ṅ2 + c2

s (∂i n · ∂i n) + µ2n2
] + iλ(n2 − 1), (67)

where ∂i is the space derivative for i := x, y. At the characteristic low-energy scale, the mass of
the � field µ is much less than the exchange constant J and the LW AF fluctuations contain many
universal properties [12]. The connection of the constants which determine these universal properties
with parameters of the original Heisenberg model was obtained not in a direct manner but by some
calculations in the ordered phase [13, 16].

We will use the scale separation based on some sort of Pauli–Villars transformation because it
is well defined in comparison with the scale separation in k space. Suppose that we have some
theory for the field ϕ. The GF Ĝ of the field ϕ can be separated into two parts Ĝ = Ĝ1 + Ĝ2, which
correspond to two new fields ϕ1,2. The interaction V (ϕ) changes into V (ϕ1 + ϕ2). This transformation
can be perfomed in a precise manner. Let us choose Ĝ = p−2 and Ĝ1 = (p2(1 + p2/�2))−1, Ĝ2 =
(p2 + �2)−1. The achieved splitting of the Green function of a scalar field ϕ into two parts provides
the scale separation because the field ϕ1 is dominant at small p and the field ϕ2 at large p.

Let us apply this method to the Lagrangian Ltot (45). The field Ω may be written as a sum of two
new fields n and v: Ω = n + v. The operators Ĝ ≡ ĜΩ(q), Ĝ1 ≡ Ĝn(q), and Ĝ2 ≡ Ĝv(q), in this
case in the (ω, k) representation, may be chosen in the form (53), (54)

GΩ(q) = �M (q)/2s L̄(q) ≡ F(q)/L̄(q),

L̃(q) = 2uω + �2ω2
0k, F(q) = [uω + �J (1 + γk)]/2s, (68)

Gn(q) = F(q)�2

L̃(q)(�2 + L̃(q))
, Gv(q) = F(q)

�2 + L̃(q)
,

where the primary dispersion law ω0k is defined in (20). We omit in (68) some small terms of the
order � which can be essential only for the calculation of the primary free energy (3.2). We assume
that max (T, µ) � � �J . Only in this case the cut-off momentum � has a clear meaning.

The fluctuations of the field n are of LW and low frequency (LF) type. This leads to the rapid
decrease of the GF Gn(q) with an increase of the three-dimensional momentum q = (ω, csk), q2 =
ω2 + c2

s k2. As a result, the Lagrangian LΩλ reduces to Lnvλ and has the form

Lnvλ = [s/2J�2][n · (q̂2 + µ2)(�2 + q̂2)n] + [v · (1/2F(q̂)(�2 + L̃(q̂))v] + iλ(n + v)2. (69)

The LW and the LF fluctuations of the field v are suppressed due to its big mass �, and only the
LW and LF fluctuations of the fields � and λ are essential. One can check that the LW theory for the
fields � and λ does not contain practically any ultraviolet divergencies due to the cut-off �. Actually
the GF of the λ field is determined by the polarization operator �0(q) (33) and in the continuum
limit has the form

Gλ(q) = (�0(q))−1 = sq2/4J , q ≥ kT . (70)

Now we have the following large momentum behavior of the elements of the diagram technique
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Gn(q) ∼ q−4, Gλ(q) ∼ q2, and �(q) ∼ q0, where �(q) is the vertex. The only divergent diagram
is the diagram for the mass operator in the lowest order but it is naturally subtracted once [14] and
after that it is convergent. The next order of perturbation theory leads to (a) two additional GF Gn(q),
(b) additional GF Gλ(q), (c) additional vertex �(q), and (d) additional integration over q. As a
result we have the renormalization factor R(q) = (Gn(q))2Gλ(q)�(q)q3 ∼ q−3 and the general
convergence is improved. This means that the Pauli–Villars regularization is working. It is necessary
to stress that without the regularization factor �2/(q2 + �2) in the n field GF we have R ∼ q.
This means that the original long-wave and low frequency theory is unrenormalizable, and it is
not possible to include all divergences in the finite number of objects of the theory. Of course, the
parameter � is artificial and must be canceled when we calculate any observable properties due to
the compensation of the dependence on � from long-wave and short-wave contributions.

Let us demonstrate how this scheme works for the example of the BC of the theory 〈Ω2〉 = 1.
Substituting Ω = n + v we have 〈n2〉 = 1 − 〈v2〉 and

〈n2〉 = N
∑

q

Gn(q) ≡ N T
∑

ω−2π jT

∑
k

Gn(q)

(71)

〈v2〉 = N
∑

q

Gv(q) ≡ N lim
�→0

∫ π/�

−π/�

dω

2π

∑
k

Gv(q),

where GF Gn(q) and Gv(q) are defined in Eq. (68), and the continuum form of the GF Gn(q) follows
from (69). Here the summation over j for the GF Gn(q) is performed in the limits ±∞. The main
contributions in the integrals in (71) arising from the Green function Gn come from momenta k ≤ �

and those arising from the GF Gv come from momenta k ≥ �. The left hand side of Eq. (71) can
be calculated if we reformulate accurately the summation over the frequencies ω = 2π j and the
integration over the momentum k can be extended to infinity (see [2, 12]). When we calculate the
right hand side of Eq. (71) we can put the temperature T equal to zero and replace the summation
over ω by an integration and the integration over ω can be easily performed. The integration over k
can be performed treating �/J � 1 as a small parameter. In the part of the integral depending on
�, the integration over k can be extended to infinity. The other part is independent of � and can be
calculated in the same manner as the constant cM0 in Eq. (22). As a result, the BC has the form

N

4π Js2

(
� + 2T ln

(
µ

T

))
= 1 + N�

4π Js2
− N

4s
(1 + c0 − c1).

We can see that the dependence on � is canceled in both sides of the BC and for µ we obtain
expression (29) if we take into account the leading order contribution in 1/2s.

We have demonstrated some general properties of the QAF with separation of scales ξ � a.
The role of the classical and quantum spin fluctuations is essentially different. The separation of
the spin fluctuation into quantum and classical ones in perturbation theory is determined by the
summation over the frequencies ω. The Sommerfeld–Watson transformation gives us the charac-
teristic contributions proportional to 1 + 2n(k), where n(k) is the Planck distribution function,
and determines the separation of fluctuations. The quantum fluctuations are independent from the
temperature T . From the point of view of the LW theory the quantum fluctuations are divergent
in the ultraviolet region. The main contribution to the quantum fluctuations comes from the re-
gion in the momentum space ka ∼ 1. The contributions of the order k ∼ � are small. Actually
the second term in the right hand side of the BC is lower than the last one by the small para-
meter hcs�/J . This illustrates the idea that the quantum fluctuations in the LW region are not
essential and can be neglected. In this LW region only the classical fluctuations with the Planck
distribution function are essential. In this way we arrive at the “renormalized classical region”
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picture [8, 12] for the classical fluctuations. The classical LW fluctuations possesses some nice pro-
perties.

(1) They are convergent in the ultraviolet region due to a natural cut-off at k ∼ kT due to the
Planck functions.

(2) The parameters which determine these fluctuations are the renormalized ρs , c2
s , χ⊥ = ρs/c2

s
that enter in the action (67).

The previous discussion clarifies the formula (66) for the mass µ of the � field: all the quantum
renormalizations are included in the renormalized spin stiffness ρs .

Whether this result remains valid in higher order of 1/N is an open question because the interaction
between the LW n and the λ fields is not renormalizable. In the recent paper of Hasenfratz [17] there
is a direct confirmation of this point of view.

5. DISCUSSION

Our approach to the theory of the QAF is based on an explicitly rotational invariant formulation
of the path integral in terms of the spin coherent states. A nontrivial choice of variables enables the
formulation of the theory on the basis of the saddle point approximation for the fields Ω, M, and λ.
As a result we were able to obtain the spin fluctuations at short and at long distances, and for short
and long times. This is the main result of the present paper.

We have worked out the method of construction of perturbation theory in relation to this saddle
point. This program is not trivial because it requires taking an accurate limit when the time step
� tends to zero. This permits developing a theory which in some sense is similar to the spin wave
theory for the calculation of the short distance and short time fluctuations and is similar to the sigma
model when we consider long distance and long time fluctuations. We have obtained the free energy
and the first corrections to the Green functions of the theory.

We have performed the separation of scales with the help of Pauli–Villars transformation. This
permits us to separate out the quantum and the thermal fluctuations. The quantum fluctuations are
short waves and the thermal fluctuations are long waves. The fluctuations of the Largrange multiplier
λ contain short wave as well as long wave contributions.

We believe that the present approach to the QAF will be fruitful in the theory of the AF fluctuations
in HTSC superconductors.

A. INVARIANT COHERENT STATES FOR THE ROTATIONAL GROUP

A.1. Transformation Properties of the Spin Coherent States

At first we discuss why the Lagrangian (4) is not explicitly rotational invariant, although the
physical problem related to the Heisenberg Hamiltonian (1) possesses obvious rotational symmetry.
The reason lies in the transformation properties of the state |z〉 under rotations. For further discussion
it is more convenient to use the state |n〉 which coincides with the state |z〉 up to a phase factor
exp(isϕ) [11, 18]

|n〉 = exp(−iϕ Ŝz) exp(−iθ Ŝ y) |ref 〉. (72)

In Eq. (72) it is assumed that the complex number z and the unit vector n are connected by the
relation z = tan(θ/2) exp(iϕ). One can easily check that the state |n〉 satisfies the equation

(Ŝ · n)|n〉 = s|n〉. (73)
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We may consider Eq. (72) as a solution of Eq. (73). Although Eq. (73) is explicitly rotational invariant,
its solution is not. This circumstance was clarified by Perelomov in [10] where the coherent states
for an arbitrary Lee group were introduced. The rotational group has three parameters: the Euler
angles ϕ, θ , and ψ . However, a point on the sphere is parameterized by two parameters ϕ, θ only.
Due to this circumstance there is an invariance up the phase factor

|n′〉 = exp(i�(n, â))Û (â)|n〉, ni = ai j n j . (74)

Here â is the 3×3 orthogonal matrix of the three-dimensional rotations; �(n, â) is the phase function
which depends on the vector n and the matrix â; Û (â) is the operator (matrix) of the 2s + 1 dimen-
sional representation of the rotation â. The situation with respect to the invariance under three-
dimensional rotations is clarified by Eq. (74). The vector |n〉 is not invariant but the projector |n〉〈n|
is invariant. Now it is obvious why the total action and the partition function are invariant under
rotations. Notice that the invariance of the measure of integration over z is obvious if we change the
variable to n. However, the kinetic part of the Lagrangian Lkin( j, n) is not invariant under rotations

�Lkin( j, n) ⇒ �Lkin( j, n) − i�(nj) + i�(nj+1). (75)

The transformation (75) is a kind of Abelian lattice gauge field transformation.
From this discussion it is obvious that the modulus of the scalar product of two states |n〉 and |n

¯
〉

is an invariant under rotations

|〈n
¯
|n〉| = [(1 + n

¯
· n)/2]s . (76)

A nontrivial scalar, vector, tensor, etc. under rotations is, in general, determined by the ratio

Ai j ... = 〈n
¯
| Âi j ...|n〉/〈n

¯
|n〉, (77)

where Âi j ... is a tensor operator acting on the spin Hilbert space. When a rotation is performed the
additional phase factors from the numerator and the denominator cancel each other. One obtains an
invariant vector if one takes Ŝ for Âi j ... (see Eq. (49)).

A.2. Invariant Coherent States

It seems that the noninvariance under rotations of the spin coherent states |n〉 is an intrinsic property
of them. However, it is possible to define formally invariant states if we introduce some additional
unit vector m, m2 = 1 which is orthogonal to the vector n, n · m = 0. Together with the vector
k = [n × m], these unit vectors determine a reference frame. One can determine the components
of these unit vectors in the initial reference frame: m0 = (1, 0, 0), k0 = (0, 1, 0), n0 = (0, 0, 1).
Instead of the transformation (72) which defines the state |n〉 we define the state |n; m〉 with the help
of the general rotation from the reference state

|n; m〉 = e−iϕ Ŝz e−iθ Ŝ y e−iψ Ŝz |ref 〉. (78)

Due to our choice of reference state |ref 〉 = |ss〉 the last exponential operator in (78) is in fact a
numerical factor. One can easily find that tan ψ = −kz/mz . For that it is sufficient to find the three-
dimensional matrix which rotates the vectors n0, m0 into the vectors n, m.

Now one can find the Lagrangian Lkin( j, n) which is simply given by

�Lkin( j, n) = −ln(〈n
¯
; m

¯
|n; m〉), (79)
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where we use the notation x
¯

≡ x( j + 1), x ≡ x( j). It is convenient to separate the Lagrangian Lkin

into its real and imaginary parts, Lkin = Lmod + iLpha,

〈n
¯
; m

¯
|n; m〉 = [(1 + n

¯
· n)/2]sY (n

¯
, m

¯
, n, m),

�Lmod = −s ln[(1 + n
¯
· n)/2)], (80)

�Lpha = i ln(Y (n
¯
, m

¯
, n, m)),

where |Y (n
¯
, m

¯
, n, m)| = 1. Thus, according to Eq. (76), Y is a pure phase factor.

The explicit form of Y can be found from Eq. (78) in terms of the Euler angles

Y 2 = exp(is(ψ
¯

− ψ))〈ref | exp(iθ
¯

Ŝ y) exp(i(ϕ
¯

− ϕ)Ŝz) exp(−iθ Ŝ y)|ref 〉/(H.C.). (81)

The matrix element in (81) can be calculated using Wigner d-functions [11, 19] or with the help of
the z-representation of the spin coherent state [11, 18], Y = P

¯
∗
ψ PψP

¯
∗
ϕ Pϕ Pn , where

Pϕ =
(

nx − iny

nx + iny

)s/2

, Pψ =
(

mz + ikz

mz − ikz

)s/2

,

(82)
Pn = [(1 + n

¯
· n + n

¯ z + nz + i[n
¯

× n]z)/H.C.]s .

The Y factor must be an invariant under rotations but this invariance is not obvious from the form
(82). In fact Y is a function of the scalar products n

¯
· n, n

¯
· m, and m

¯
· k so on. To find this function

we shall use the following trick. We calculate the Y factor in a special reference frame where
m = (1, 0, 0), k = (0, 1, 0), and n = (0, 0, 1). In this reference frame Pψ = Pϕ = Pn = 1 and
n
¯ x = n

¯
· m, n

¯ y = n · k, m
¯ z = m

¯
· n, and k

¯z = k
¯
· n. Finally we obtain for Lpha the expression

�Lpha = (is/2) ln[RR
¯

∗/R∗R
¯
], R = n

¯
· m + in

¯
· k. (83)

In (83) and below we suppose that a double underlined quantity x corresponds to a nonunderlined
quantity x . Another form for the Lagrangian Lpha can be obtained if one changes to the reference
frame where n = (1, 0, 0), k = (0, 1, 0), and m = (0, 0, −1).

Now one can obtain an expression for the Lagrangian Lkin in the continuum limit. The magnitude
of Lmod is a small quantity of the order �. Using the obvious decomposition x

¯
� x + �ẋ for x :=

n, m, k we get from (83) a simple expression for Lpha

Lpha = −sn · [m × ṁ]. (84)

We obtain the well-known form for Lpha if we choose m = (ez − nzn)/
√

1 − n2
z , with m2 = 1,

and n · m = 0:Lpha = s(1 − cos θ )ϕ̇, where ez is the unit vector along the z-axis.

B. INVARIANT LAGRANGIAN FOR THE QUANTUM ANTIFERROMAGNET

The invariant Lagrangian Lmod (n) and Hamiltonian H(n) were given in Eqs. (46) and (48) but the
form of the Lagrangian Lpha(n) is more complicated and will be discussed in detail below.

The Lagrangian Lpha cannot be expressed in terms of the vectors n alone (83). Its expression also
involves the vectors m and k. These vectors are expressed in terms of the vectors Ω, M as
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na,b = ±cmΩ + sm l, ma,b = cm l ∓ smΩ, ka,b = ±[Ω × l],

cm = 1 − M2/4

1 + M2/4
, sm = M

1 + M2/4
, c2

m + s2
m = 1, (85)

l = −M−1[Ω × M], |l| = 1, f = sm l, g = [Ω × f].

These expressions for m and k are not analytic in the vector M: they do not have a well-defined limit
independent from the direction of the vector M when it tends to zero. But the auxiliary vectors f and
g have definite limits as M tends to zero. However, if the partial contributions of sublattices a and
b are combined, it may be shown that Lpha is expressed in terms of the scalars cm and sm and the
vectors f and g which are analytic in M. Therefore Lpha is also analytic in M. According to (83) we
have

�Lpha = is

2
ln

(
RaR

¯
∗
a RbR

¯
∗
b

R∗
a R

¯ a R∗
bR

¯ b

)
. (86)

Substituting Eqs. (85) for n, m, and k in Eq. (83) for R we get Ra,b = Da,b + Ea,b with

Da,b = c
¯m[±cm(Ω

¯
· l) + i(Ω

¯
· k)], (87)

Ea,b = −c
¯msm(Ω

¯
· Ω) ∓ sm(f

¯
· Ω) + cm(f

¯
· l) ± i(f

¯
· k).

The quantities Da,b and Ea,b are not analytic in M because they contain the nonanlytic vectors l and
k explicitly. However, one can introduce new quantities Ta,b = D∗

a,b Ra,b. Using the identity Da =
−D∗

b one can check that the expression (86) for Lpha will not change if we make the replacement
Ra,b ⇒ Ta,b. This property is valid due to the compensation of the D-factors coming from sublattices
a and b. Finally we obtain, for the quantities Ta,b,

Ta,b = Aa,b + Ba,b, Aa,b = D∗
a,b Da,b, Ba,b = D∗

a,b Ea,b,

Aa,b = c
¯

2
m[1 − (Ω

¯
· Ω)2 − (Ω

¯
· f)2],

Ba,b = c
¯m{±c

¯mcm(Ω
¯

· Ω)(Ω
¯

· f) + cm(Ω
¯

· f)(Ω
¯

· f) (88)

± (f
¯
· f)(Ω

¯
· f) ∓ (Ω

¯
· f) ± (Ω

¯
· Ω)(Ω · f

¯
)

+ i[c
¯m(Ω

¯
· Ω)(Ω

¯
· g) ± cm(Ω · f

¯
)(Ω

¯
· g) + cm(Ω · g

¯
)]}.

One can see that Ta,b (88) depend only on the vectors Ω, f, and g and the scalar cm which are analytic
in M.

C. CALCULATION OF INTEGRALS AND SUMS OVER ω

The calculation of integrals and sums over the frequency ω for a finite time step � can be performed
in the following manner. The function to be summed over (integrated over), f (ω), can be split into two
parts, f (ω) = f p(cω) + fnp(cω), where f p(cω) is the polynomial part in cω = cos(ω�) and fnp(cω)
is the nonpolynomial part of the function which decreases for ω → ∞. The sum (integral) of the
function f p(cω) over ω, within the limits ±π/�, can be easily performed. The sum (integral) of the
function fnp(cω) can be converted into the contour integral as shown in Fig. 1 with the help of the
Sommerfeld–Watson transformation. The contour integration is possible because the integral over
the vertical line C1 and the vertical lines C2 cancel each other due to the periodicity of the function
f : f (ω + 2π/�) = f (ω). The result of the summation is the sum of the residues of the function
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FIG. 1. Contours of integration in the complex ω plane for the calculation of the integral of the function fnp(cω). On the
picture w ≡ ω and wB = π/�. The points ±iwk show the typical poles of the function fnp(cω).

0.5β cot(βω/2) fnp(cω) as shown in Fig. 1. For T = 0 one can simply convert the integral of the
function fnp(cω) over −π/� < ω < π/� into the contour integral over C1 or C2.
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