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We use an instanton approximation to the continuous-time spin coherent-state path
integral to obtain the tunnel splitting of classically degenerate ground states. We
show that provided the fluctuation determinant is carefully evaluated, the path
integral expression is accurate to ord®1/j). We apply the method to the LMG
model and to the molecular magnetgHa a transverse field. €003 American
Institute of Physics.[DOI: 10.1063/1.1521797

I. INTRODUCTION

One of the most convincing demonstrations of quantum effects in a near-macroscopic system
is provided by the dramatic oscillatibrof the level splittings in the molecular magnetgFas
function of an external magnetic field. This system is small enough that one can obtain all the
energy levels by a trivial numerical diagonalization of ax2ll Hamiltonian matrix, but little
insight into the phenomenon can be obtained this way. However, by thinking of the spin vector as
an almost classical object, the oscillations can be understood as quantum interference between
competing tunneling paths for the largé=10) spin between two classically degenerate minima.

The natural tool for studying tunneling in the semiclassical limit is the path integral. For spin
this should be the spifSU(2)] coherent-state path integral,or its phase space relatifg.lt is
easy to establish that this formalism gives a good qualitative description of the tunnelling
process—-8 including the dramatic topological quenching of the tunnélitigat makes the ke
results so interesting. Unfortunately, a straightforward application of the spin coherent-state path
integral to compute the semiclassical propad&tor the tunnel splitting' yields results that are
incorrect beyond the leading exponential order. In other words, the first quantum corrections as
J—oo are incorrectly obtained.

This issue appears for other systems that involve, or can be modeled in terms of] large-
quantum mechanical spins. Examples include molecular rétdfshe Lipkin-Meshov—Glick
model of certain collective excitations in nuctéi® and superdeformed rotating nucltéiThe
large spin limit is also valuable as an approximate method for studying magnetic ofdefing
including “order from disorder” effects in such systeftsin all these cases the first quantum
corrections are not known. Often they are fixed by heuristiacdbhocconsiderations. Liel puts

3This paper is dedicated to the memory of Victor Belinicher, who was lost when Siberia Airlines flight 1812 was shot down
over the Black Sea, Oct. 4th, 2001. Victor made many contributions to physics, in particular to the spin tunnelling
problem.
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rigorous bounds on the partition function of quantum spin systems, but he does not determine the
1/J corrections precisely.

In principle, a correct evaluation of the general spin propagator in the semiclassical limit
should resolve all these difficulties. This propagator is a notoriously refractory object, however,
and its parent, the spin path integral, has a reputation for being mathematically ill defined—or at
least harder to deal with than the conventional Feynman path integral, whose mathematical subtle-
ties have been well studied. Many authors have therefore sought other ways of attaining the
semiclassical limit, but none applies to general Hamiltonians. For the calculation of spin tunnel
splittings, although there do exist other path integral approaches which solve particular problems
correctly?!??the resulting calculations tend to be intricate, and the simplicity seen in the conven-
tional Schralinger particle case is lost. Further, they do not lead to generally applicable recipes.

Recently, however, it has begun to be appreciated that the problem with the spin coherent state
calculation is simply that the fluctuation determinant has an “anomaly,” and that, once the “extra
phase” provided by the anomaly is taken into account, the coherent state path integral gives
correct answers. This extra phase seems to have been originally discovered in the 1980s by
Solari?® but the significance of his result was not widely appreciated. It was then rediscovered by
one of the present authéfsand also by Vieira and SacrameritoThe interpretation of the extra
phase as an “anomaly” is due to the remaining authors of the present &fticle.

The present article is another step in the larger program of developing the spin semiclassical
limit. The discussions of the extra phase cited in the previous paragraph were restricted to the case
of quantum evolution between generic values of the classical degrees of freedom. However, when
we calculate the tunnel splitting, the endpoints of the instanton path lie at local minima of the
classical energy and, just as in the Sdhinger particle case, the Jacobi fluctuation operator has a
zero mode which makes the inverse of its determinant singular and the general formula for the
propagator inapplicable. Thus our earlier work was not directly amenable to calculating the tunnel
splitting. The present article fills this gap.

In the next section we provide a brief review of the spin coherent-state path integral, including
the correction to the fluctuation determinant prefactor. In Secs. Ill and IV we discuss the compli-
cations that ensue when there is a zero mode and provide a general formula for the one-instanton
contribution to the tunneling amplitude. In Sec. V we apply this formula to the relatively simple
case of the Lipkin—Meshkov—GlickkMG) model** and in Sec. VI we evaluate the tunnel
splitting for a realistic model of ke

As explained above, our aim is not to find formulas for the energy splittings that can be
compared with experiment. After all, the splittings for both model Hamiltonians can easily be
found numerically for moderate values &f sayJ=<20.?" Instead we are using these models as
nontrivial test cases. It is our hope that our methods will prove practical in other situations—
multispin problems, for example—where numerical work is not so easy.

Il. SPIN COHERENT STATES
We follow the conventions in Ref. 26 and define our spin coherent &dtebe
|2)=exp(z3,)]i,~ ), (2.)

where|j,—j) is the lowest spin state in thg 2 1-dimensional representation of &YandJ., is
the spin algebra ladder operator obeying

I im=\i(G+1)—m(m+1)|j,m+1). (2.2

The variablez is a stereographic coordinate on the unit sphere witld at the south poléspin
down direction andz= at the north pol&spin up.

These coherent states are not normalized, but depend holomorphialy Tdris means that
matrix elements such aé&z’|O|z) are holomorphic functions of the variable and anti-
holomorphic functions of the variablg .
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The inner product of two coherent states is
(Z'|2)=(1+7'2)%, 2.3
and they satisfy the overcompleteness relation

2]+1

O e @4

Hered?z is shorthand fodx dy. The factor 1/(}7zz)? combines with this to make the invariant
measure on the the two-sphere. The remaining factor in the integration measurez2)R1
serves to normalize the coherent states.

We may use the overcompleteness relation to derive a formal continuous-time path integral
representation for the propagator

K(Z & T =(¢ile Mgy, 2.5

We insertN intermediate overcompleteness relations i{2®&) and consider the limiN—co. This
leads to the path integration forméfa

K(Z1.0T)= | "du@2)exdS@D.20)), 26

where the path measudiu is

) z0)= i [ AL @7
Z(t),z(t))= lim = , .
K New izl T (1+7Z,2,)?
and the actior8(z(t),z(t)) is
iz—7z
S((1),2(1) = {In(1+z(T)) +In(1+Z(0)&;) }+f i1, HE@DdL (28
The c-number HamiltoniarH (Z,z), is obtained from the operatét by
H(Z,2)=(z|H|2)/(z|2). (2.9

The pathsz(t), z(t) obey the boundary conditiorg0)=¢;, z(T)={¢;, butz(0), z(T), being
actuallyz{(0+ €) andz(T— €), are unconstrained, and are to be integrated Hver.

The manipulations leading to the continuous time path integral are heuristic, but with careful
treatment the formal path integral should be as useful as the familiar configuration space Feynman
path integral. In particular the semiclassical, or lajggropagator can be obtained from a sta-
tionary phase approximation to the path integfal.

The stationary phase approximation requires us to seek “classical” trajectories for &hich
remains stationary as we vary the functia(s) andz(t). These stationary paths will generally be
complex. If we writez asx+iy andz=x—iy, then, except in special casesandy are not real
numbers. In particular there is no requirement &@&) be the complex conjugate a{0)=¢;,
nor thatz(T) be the complex conjugate @ T)={¢;. Bearing this in mind, we make variations
about a chosen path, and keep track of all boundary contributions resulting from integrations by
parts. We find that
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2jz(T) 2jz(0)
—0z(T)+ ——
1+ ¢:z(T) 1+2(0)¢;

-+JT 5&0(—i§5———iﬂi
0 (1+z2)?> oz

Demanding that this change in the action be zero requires the trajectory to obey Hamilton’s
equations

5S= 52(0)

2jz

_0H>]
i— | tdt. (2.10

+5Zt)( - (1+?z)2_ gz

. (1+Zzz2)? oH (1+22)? oH
Z=l—F =—I

2 oz T (217
together with the conditiong$z(0)=0 and 5z(T)=0. We can therefore impose the boundary
conditionsz(0)=¢;, z(T)={¢s, butz(0) andz(T) are free to vary, and so are determined by the
equations of motion. This is important because Hamilton's equations are first order in time and we
cannot simultaneously impose initial and final conditions on their solutions.

The dynamically determined endpoints can also be read off from the Hamilton—Jacobi rela-
tions that follow from(2.10. These are

9Sq _ 2jz(T) Sy 2jz(0)

— — , . (2.12
s 1+gz(T) 96 1+Z(0)¢
The Hamilton—Jacobi relations also tell us that
dSy IS
) (2.13
&(i agf

showing thatS; is a holomorphic function of;, and an anti-holomorphic function @f . These
analyticity properties 08 coincide with those oK. This is reasonable since e®pis the leading
approximation taK, and we would expect analyticity to be preserved term-by-term in the Jarge
expansion. Finally, we have the Hamilton—Jacobi equation

ScI _

Fra iH(Z;,2(T)). (2.14

In Ref. 26 we showed that after we compute the Gaussian integral over small fluctuations
about the stationary phase path the resulting semiclassical approximation to the propagator is

— 1/2
— 1+4z2(T)(1+Z(0) &) %S, — i(T
Ksc.@f,zi,T):(( (D=0 _') exp|sc|(zf,zi,T>+—f ¢SK<t>dt],
2] 2 270
(2.195

or a sum of such terms over a set of contributing classical paths. In this expression

—)\2 =5\ 2
1(i(l+zz) oH i(1+zz) aH) 216

¢s2D=3\ o T 2 iz

is the “extra-phase” discovered by Solari, Kochetov, and Vieira and Sacramento.
The form(2.15 is valid only if the prefactor is finite. When we compute instanton contribu-
tions to tunneling there is a zero mode in the quadratic form for small fluctuations, and the
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resulting divergent integral over this mode is to be replaced by an integral over a collective
coordinate labeling the instant that the tunneling event occurred. This we will describe in the next
section.

We conclude this section by writing the Solari—-Kochetov phase in an alternative way that will
prove useful later. We first write

Psk=Psk—1awz, (2.17)
where

(1+72)% 9°H

¢SK:2—J'(92_[97’ (2.18
_1+7z( H - )16
awz=I 7] 2t (2.19

Along the classical trajectory, the equations of motion allow us to trade in the partial derivatives

dH/9z and gH/Jz for Z and z, so that

Z;clzcl_ .anﬂ
1+74zy

(2.20

awz(7)=

This is nothing but the Wess—Zumino or kinetic term in the classical action, and was anticipated
in our notation. Hence,

PirT 1 (T T
Efo Psk(t)dt= > jo awz(t)dt+ > jo Psi(t) dt. (2.21)

The advantage of this rewriting is that the integrabgj; is needed to find, anyway, and it
is generally easier to integraigs, than ¢sk. In fact, ¢ is essentially the Laplacian of the
energy on the unit sphefé,

' 1 2

Ill. DEALING WITH THE ZERO MODE

As is usual in calculating tunneling effects, it is convenient to perform the computations in
Euclidean(imaginary time. For the sake of symmetry we will take the time evolution as running
from —T/2 to T/2 and the propagatd@.15 becomes

_ 1 (T2
K. & ,T):[D(T)]UZGXP{ Scl"‘i T/2¢SKdT]v 3.9
where againgg is the integrand of the Solari—Kochetov phase

=5\ 2 —-\2
1( d (1+zz)° oH i(1+zz) aH) 3.2

SKT2\gz 2] 9z 9z 2j dz)
evaluated alongg( ), z(7), andD(T) is the fluctuation determinant. The latter may be found by
the “shooting method.” As explained in Ref. 26, this involves solving the equation

B(7) —d,+A(7)

L= A B(7)

Al
SR 09
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where

Al d (1+zz)2 oH (1+zz)? oH
¢SK—‘ 7z 2] 9z w2 @)

3 (1+zz)% oH

Tz 2j gz’ 3.4
— 9 (1+72)? oH
9z 2 dz’
with the initial condition
‘/’L) (0)
T/2 = . 3.
V(= T/2)= ( m 1 (3.5

Given the solution of this equation, we read off the determina @®) = ¢, (T/2). In real time,
and when there are no problems with zero modes, this recipe leads to the prefactor appearing in
(2.15.

Now assume that the coherent stdig}s and|z;) represent spins pointing along the directions
of two equal-energy global minima of the Hamiltonigh Because the gradient of the energy
vanishes at both ends, the classical path joirantp z; has the character of an instanton: as the
total time taken to traverse the path becomes longer and longer most of the motion still takes place
in an “instant,” a fixed period short in duration compared to the total. Whdrecomes infinite,
the epoch of this “instant” is arbitrary and this leads to a zero-eigenvalue mode in the fluctuation
operator. ThuD(T) is formally zero. The problem of dividing by the square root of zero is
avoided by introducing a collective coordinate for the tunneling epoch, and the formal infinity in
the one-instanton contribution to the propagator becomes a facior of

The classical instanton solution can be writ&gfi7— 7o), Zo(7— 7o) Wherer, is the epoch at
which the tunneling occurs. Since, in the largelimit, the action for the tunneling event is
independent ofy, the normalized zero mode is

[(m) g ('zd(r))
%_(%(r))_l%zd 2o(7) | 36
whereg is chosen to make
T/2 T2
xlfgxlfodr:f /(¢§+Z§)d7=1. (3.7
- —-T/2

The divergent Gaussian integration over the coefficient of the zero mode is replaced by an
integral over possible tunneling epochsby inserting a factor of

T2
1= ex F? 3.8
J_ L ( ) b o P70 (38
into the path integral, with the choice
F —fmd’ ! Z(T)> 3.9
(TO)_ _1p T 1+Z;|Zc|(7/_70) (T TO) 77. ) ( . )

and then proceeding in a manner similar to that used for quantum mechanical instantons in the
Feynman path integrd?3! we first setz=z,(7— o) + 8z(7— 7,) and similarlyz. Next, after
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observing that everything depends only on the combinatierry, we change variables— 7
— 7. The integral overr, is then trivial and gives a factor af. Meanwhile, after an integration
by parts and ignoring the fuctuations of,£) about @,z;) which are of higher order, the
Jacobian factor becomes

OF (TR
- f d+' B—_
dtg  J-112 1+2z4zy

o) L
207 " g (3.1

Vg

The quadratic term in the exponent is a projector onto the zero mode and replaces the vanishing
eigenvalue by 1/2x. The net result is the replacement

: j
) N

where\y(T) is the eigenvalue that vanishes Bdecomes large.
The desired ratio, D&tL) = D(T)/\g, is equal tog (T/2)/\o(T). We now turn to the evalu-

ation of this ratio. As we shall see, we will not have to obtgir(T/2) and\,(T) separately.
The eigenvalue problem is

(3.1)

D(T)} - 1/2
No

I:’\I,)\:)\"“I,)\, \If)\:(%)\), (312
A

where L is the same operator as {8.3), but with boundary conditions{xh(—T/2)=$A(T/2)
=0.

For finite T the shooting method solutiod, , is close to, but not quite equal to, the “small-
eigenvalue” eigenfunctiorﬂf)\o. Although¥| obeys the boundary condition at —T/2, it does

not quite obey the boundary conditionat +T/2. In turn‘l’)\o is close to, but not quite equal to,
the infinite-T zero-eigenvalue modé¥ .

Now ¥, obeys the equatioh¥,=0, but no particular boundary conditionsafl/2. There
is a second solution of this equatidy=(£&y.&,)!. The Wronskian of these solutions

—_ ) =
3 ot

‘ po(7)  &o(7)
(3.13

Yo(7)  &o(7)

is independent of. Next we observe that the differential equati@12 can be converted to an
integral equation

T

‘I/)\(T)=WL(T)+AJ_T/2dT'G(T, )W\ (7")

A T
Z‘I’L(THV—VJ d7'[Wo(n)Eo(7) = Eo()Wo(r)]¥,(7). (3.14
—T/2

SinceWV (7) obeys the boundary conditions atT/2, and the integral vanishes at this point, we
can find the eigenvalues by requiring that the lower component ¥, vanishes at-=T/2. We

are only interested in solutions whexe: \ is very small. Because of this we can approximate the
¥, (7") appearing in the integral i(8.14) by the zeroth-order solutionl, . In this way we see
that

ZL(T/Z)_ 1 (T2 _ _
W——V—VJT/ZdT[llfo(T/Z):B(T)—§o(T/2)‘I’B(T)]\I’L(T)- (3.19
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The integral in(3.15 may be evaluated using only the asymptotic behavioPgfand =, which
involve z.; andz. This asymptotic behavior depends only on the form of the Hamiltonian in the
neighborhood of the endpoints.

In all cases we consider the instanton solutions have the propertgfkaty at their end-
points. Here the asterisk denotes a true complex conjugate as opposed to the formal conjugate
denoted by the bar. The coincidence of the formal and true conjugate occurs because these
endpoints lie on the real unit sphefeTaking this observation into account, we parametrize the
Hamiltonian in the vicinity of the initial stationary point in terms of two frequencies,, as

2 1 1
H(z,2)~ 5| 01(2—2)(Z—2ZF) + sz(z—zi)2+ Ea)z(?—zi*)2 . (3.19

(1+Zz)
SinceH(z,z2) is real, so isw; . Also, because the initial point is an energy minimum, we must have
01>|w,|. We can therefore define a real mean frequeagyhy

wzzwi—wzwz . (3.17

A similar expression holds at with the same values @6, andw, provided the degeneracy in the
Hamiltonian is due to some symmetfyhere might be an extra phase factowip, but this makes
no difference to the subsequent calculation.

As 7 becomes large and negati®— w,, B— w5 andA= ¢sc— w1, SO we see that

EO £07 T é)) é)) —wT
( lﬂo) %_)e , (50 éo- e (318
where
Wy —wtwy|| iy
wto, o} Zo_) - (319

There is an analogous relation fofo( ,£,_)'. We can use the Wronskian to conndeg_ with
Eo_, So everything can be expressed in termd\dbfind the normalizationy. Similar remarks
apply toV,, and=y, . If we write

¢L) (% (50
— |=a|l — -, 3.2
(l//L “Vo R €o (3:20
and apply the boundary condition atT/2, we can finda and 8, and hence
lﬁL(T)) 1 T,Z( lﬂo(T)) T 50(7'))
— =—|—§,.ev"| — _e @l — . 3.2
(WT) w| e gn) T T ) (3.2
Inserting this into(3.15 and noting that they, % terms dominate, we find
P(TI2) 1 — TP
ﬁ: - WSo—%oﬁ‘”f_m(%Jf%)dﬂ (3.22
or
W(T2) oy e (323

No(T) yo_ s 407

Thus the one-instanton contribution to the propagator is
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1 (T2 [
K(zs,z,T)=ex Scl"'i 7T/2¢8Kd7 9

Note thatyy, EO are proportional to/g, thus\/g drops out and we can simply pgt=1 in the

1/2

Yodor " puTe 20T (3.24

|w2|2

sequel. Let
Zy~w{ €7, 71—,
_ (3.29
Zg~wli e 9T, 17—+,
Then
— 0L
bo-tho+ = i (3.26
with

Using this we can write

1 (T2 [}
K(?,Zi ,T)=ex Scl+§ —T/2¢SKdT m

IV. EXTRACTING THE ENERGY SPLITTING

1/2

£l (202Te” (W2eTy (328

|w2|2

Again assume that the coherent stdtgs and|z;) represent spins pointing along the direc-

tions of two equal energy global minima of the Hamiltonidn Let | ¢) be the approximate
(tunneling-ignored energy eigenstates localized near these minima. These should have their
phases chosen so that when tunnelsncluded the eigenstates become the linear combinations

1
|¢:>:‘72(|¢i>—|¢f>)- 4.1

If the energies of these states are
E.=E,* 1A, (4.2
anda,=(z,|#,), then asT becomes large the coherent-state propagator,
K@ 2, T)=(zle "|z), (4.3

is given by

* A~ Eo T o 1
K(z,z,T)~asa* e =a sin EAT ,

AT+ ! —A3T3+
2 6 2° '

=asafe Fal (4.4

We will find the energy splittingA, by evaluatingK in the one-instanton approximation and
comparing with this expression.

It is necessary to find expressions for the amplitualeanda; . These are obtained by looking
at
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Ki=(ze "T|z¢)~|ag?e FaT, (4.9
and
Ki:(Zi|e_m|2i>“|ai|29_EaVTv (4.6)

both evaluated in the harmonic approximation. This evaluation is performed in the Appendix. This
results in

) 2w

Ki=(1+2z)? g (WAlomoyT (4.7)

w+wq

and a similar expression fdt; . Thus

1 eSut (WaI bk wpdr \F A
58~ - 1/2 +
ZA [(1+Zz) (1+Z2z2)'] N [2o(0+w)] @ W . (4.8
Now
20(0+ ;) 2w
Z T o - (4.9
(1)2 w1~ W
so finally
A=2w\P€, (4.10
where
P o o € 41
_mmaﬁ (4.11)
and
[ 1 (=
IZJJ_ aWZ(T)dT-‘r-Ef_ (psk— wq)d7 (4.12
) l «© 1 © ,
= ]+§ f_ aWZ(T)dT+§j_ (¢SK—wl)dT, (4.13
wherea,, is the kinetic term
_ ZLclzcl_ .ZCE:I
w71 = (4.14

in the classical action—the boundary terms having canceled with the#)/(1+zz)! in the
denominator. In Eq(4.13, we have used the alternative for(d.17) of the Solari—Kochetov
phase.

V. THE LMG MODEL

In this section we will evaluate the tunnel splitting in the relatively simple case of the Lipkin—
Meshkov—Glick(LMG) model**
We will take the LMG Hamiltonian to be
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. w np ap . W

He ——— 7 +J39)+ —, (5.1
v2(2j—1) V2

with w>0. For half-integel, the splitting vanishes due to Kramers’ theorem, and we will indicate

below how this comes about. Unless stated otherwise, we will be thinking of infeigewhat

follows. Sinced? +J3%=2(J-1J7), we see that the classical minima lie along. The Hamil-
tonian which appears in the path integral is

’ _(z||3||z)_‘/__ 22+72 jw -
B M g 2

By settinggH/dz= dH/Jz= 0, the classical minima are found to be at the points
(z,z)=(i,—1), (—i,i), (5.3

which correspond to the- § directions of the Cartesian axes. The explicitly added constaHit in
is chosen to makel(z,z) zero at these points.
Now we write down the equations of motion for the instantons

Fad
ZzﬁWﬁ,

7= —Viwm—?z) (5.4)
We seek a solution which goes from; (z))=(—1i,i) to (z¢,z)=(i,—1i). The two equations in
(5.4) can be decoupled by exploiting the energy conservation conditi@z) =0 which follows
from the Hamiltonian nature of the trajectory. This can be written as

2(22+7%) + 1+ 2z2z+7%2°=0, (5.5

and may be solved to yield as a function oz andvice versa

_V2z+i V2Z+i
= —| -, Z=—l= ~. (56)
z+V2i Z+V2i

(Choosing the other solution of the quadratic equation yields instantons running in the opposite
direction) Substituting these formulas in the equations of motion yields

Z=—iw(1+7%), z=iw(1+2?). (5.7

These may be integrated by elementary means to yield

2WT__
ZCl(T):im:i tanhw(r— 7'0), (58)
2wr ’
_ PV . ,
Zg(7)=—i prerinial tanhw(7— 7p), (5.9

! . . .
whereC=e?"70, C’=e?"", These constants are not independent. Energy conservation requires

C’ _\/?-1

C vi+1

(5.10
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It is useful at this point to find the frequencies v, and w,. We have

(1+Zz)? 9°H (1+Zz)? 9°H
1T gzaz RC TR I
i

2] 9zdz|.’ (5.11

where the suffix means that the derivatives are to be evaluated at the initial point. Carrying out
the algebra, we obtain

2 (
w —W, w —W. 513
! V2 V2
Hence,
w—(wf—wz)m— 2W. (513

We can now evaluate the Wess—Zumino and Solari—Kochetov terms in the tunneling action
(4.13. We denote

| awato, (5.1

| i1
wz= ]+§

1 o
lSKZEJLw((ﬁ,SK_ wq)dT. (5.19

Let us begin withl,,,. If we make use of Eq(5.7), we find

awz(T): (zz_i'Z):_|W(?+Z) (51@

1+zz

Substituting the explicit forms and performing the integration we get

lwz= IN(CIC")=—(2j+1)In(1+v2). (5.17

1
IT5

Now consider the Solari—-Kochetov term. We find that

. bw (Z+7) 51
bsk= ) (5.18
By energy conservation this equals
3w (5.19
‘/2 1 .
which is precisely equal te,. Thus,| gk vanishes, and the total tunneling action is
I=—(2j+1)In(1+v2). (5.20

We must now evaluat®. This consists of a product of various factors, all of which are to
hand. Thus,

J 1 (5.21)
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The l‘actors?+ and{_ are found by differentiating the formul#s.8) and(5.9) and examining the
limits 7— *=oo. In this we way we get

l,=4 c 5.2
§—§+_ C . ( . 3
Finally,
=4v2(3+2V2). (5.23
w1—w
Putting these together, we obtain
4j C' 4j
P=——(4+3v2) ~=—V2. (5.29
T C

At this point we have almost all that we need to write down the answer for the tunnel
splitting—except that we need to consider a second instanton. The traj€g®rsnd(5.9) passes
close to the north pole of the sphere. By symmetry there must be a second instanton which passes
near the south pole. This is given by

zy=i cothw(7—79), Zy=—icothw(7—7(). (5.25

It is obvious by symmetry again that this instanton has exactly the same amplitude as the first, so
the total amplitudéand thus the splittingss obtained by simply doubling the answer from the first
instanton.(For half-integerj, the amplitudes interfere destructively gividg=0.) Hence

1/2
A= 16\N(J—) 21/4e—(2j +1)In(1+\/2)_ (526)
a

This agrees with Refs. 21, 22, and 3B the last reference puf=1A#2 in Egs. 4.31-4.33 We
show in Tabé | a comparison between this formula and numerical evaluatidn ®he agreement
gets better with increasing up toj = 18. After this valueA is close to the machine precision, and
the error is largely in the numerical ansvér.

For completeness, we note that the average energy is givénbyl/2 (o — w4).

VI. APPLICATION TO FEg

The LMG model is of interest to us primarily because it provides a check of our formalism
against other well-confirmed calculations. In this section we will calculate the tunnel splitting for
a family of models that includes a realistic approximation to the molecular maggetThe
spin-direction-dependent energy ingFe less symmetric than that of the LMG, and the relevant
Hamiltonian includes an externally imposed magnetic field which serves to pull the classical
minima off the equator of the unit sphere. It is the experimentally observed oscillations in the
tunnel splitting as a function of the external field that makes this system interesting. The oscilla-
tions are a consequence of interference between the two distinct instanton trajectories and are
accurately reproduced by our calculation.

We take as our Hamiltonian

H=kyJ2+ k35— gugHJ,, (6.1)
with k;>k,>0. We definex =k, /k;, H,=2k;j/gug and

h=H/H.. (6.2
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TABLE I. Comparison between numerical and analyt. (5.26)] results

for the ground state tunnel splitting in the LMG model witt+ 1. Numbers

in parentheses give the power of 10 multiplying the answer. The last column
gives the deviation of the analytic answer from the numerical one. Note,
however, that forj=19 and =20, the splitting is getting close to the
machine precision, and the error is largely in the numerical result.

j A (numerica) A (analytig Difference%)
2 2.1878(1) 1.8511¢-1) 15.4
3 4.3279¢2) 3.8899(-2) 10.1
4 8.3587(3) 7.7064(3) 7.8
5 1.5781¢3) 1.4783(¢3) 6.3
6 2.9339(-4) 2.7784(4) 5.3
7 5.3948(-5) 5.1489(-5) 4.6
8 9.8372(-6) 9.4441(6) 4.0
9 1.7820(-6) 1.7186(-6) 3.6
10 3.2111¢7) 3.1082(-7) 3.2
11 5.7611¢8) 5.5932¢-8) 2.9
12 1.0298(-8) 1.0023(¢-8) 2.7
13 1.8352(-9) 1.7899¢-9) 25
14 3.2618(10) 3.1869¢ 10) 2.3
15 5.7836( 11) 5.6598( 11) 2.1
16 1.0233¢11) 1.0029¢11) 2.0
17 1.8157¢12) 1.7737¢12) 2.3
18 3.0813¢13) 3.1314(13) 1.6
19 4.9021¢ 14) 5.5199¢ 14) 12.6
20 2.5766( 14) 9.7166( 15) 62.3

We will express all results in terms of the combinatianandh. It is also convenient to define a
1/j corrected fielch and anisotropy; by

~ . 1) - o1 :
h=Jh/<J—§), k1=k1(1—§)/1- (6.3

We follow the same steps as in the LMG model. The “classical” Hamiltonian appearing in the
path integral is

H(z,2)= RCEE Kij
(We now use states in whick=0 corresponds to the north pole, as this is more convenient. Also,
a constanik; +k,) j/2 has been subtracted from the classical engiye energy minima are
now at the points

52y (72 oF(] 5252
(1-z2)*—N(z—2)°—2h(1 zz)} 6.4

(1+722)°

z=z= *Zzp, (65)
wherez, is real and given by
zo=[(1-h)/(1+h)]*2 (6.6)

In Cartesian coordinates these minima lie in #eplane—provided we confine ourselvestto
<1, which we shall do. In fact, we will assume that

h<V1-\x. (6.7
At the two minima, the energy is
€0=H(Zo,20)= —kyj % (6.8

The classical equations of motion are
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z= & [—2Z(1-72) +N(Z—2)(1+Z) + 2hZ(1+72)]
(1+72) :
- (6.9
ki _ o
=1z [—22(1-72) +N(2=2)(1+2%) + 2hz(1+72)].

We wish to solve these subject to the boundary conditiprz(—«) = z,, z;=2z(*) = — z,. Note
thatzj=z;, z;=2z;, so the instanton end points still lie on the real sphere, but the rest of the
instanton does not. Once again the equations can be decoupled by exploiting the fact that energy
is conserved along the instanton trajectory. In this ¢468z) = €. This condition can be written

as

(1-72)2-N(z-2)%-2h(1-Z22%) = —h¥4(1+Z2)?, (6.10

and may be solved to give

_ \hzx1-h)
= - - - (61])
W= (1+h)z
Substituting this in the equation of motion fay and simplifying, we get
7=+ \\(1+hkj(Z-2)). (6.12)

We will see that to obtain instantons going fragnto —z,, we must pick the minus sign in this
equation. The other sign yields instantons running in the opposite direction.

It is now elementary to integrate E(.12), and use Eq(6.1]) to obtain the time dependence
for both z,(7) andzy(7). We find

Zy(7)=— 2z tanht, (6.13

J\ tanht + V1—h?2

Zy(1)=—129 — . (6.14)
A +V1-h2tanht
Here,
t=wl2, (6.15
and the frequencw is given by
w=2kj[N1-h?)]Y2 (6.16

That this is the same that follows from Eqgs(3.16 and(3.17) shall be shown shortly. It can be
seen that our solution corresponds to choosing the minus sign if6E@ as asserted above. It is
also useful to note that the soluti¢6.13 and(6.14 can be rewritten as

Zg=—2Zptanht, Zzy=—2zycotht+ty), (6.17

where

N 1/2
tanht0= —~2 . (61&
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Equations(6.12 and(6.11) possess a second solution,
Zg=—2Zpcotht, zy=—2zytanh(t+t). (6.19

Formally, this new trajectory can be obtained from the first by the shift+i 7/2. Alternatively,
we could obtain it by switching the expressions fprandz in Egs.(6.13 and (6.14), which
corresponds to reflection in the plane—a symmetry of the Hamiltonian—and then shiftirgy
—to.

Again we find the frequencies, w; and w,. We note that

_(1+Zz)% °H _(1+Zz)%#H 6.2
17D 929z’ @277 ?i’ 6.29

where the suffix means that the derivatives are to be evaluated at the initial peirt=z; .
Carrying out the algebra, we obtain

w1=kKij(1=h2+ 1), (6.21

w,=Kq1j(1—=h2=N\). (6.22

We now use Eq(3.17) to show thatw is given by Eq.(6.16). The same frequencies are found at
the final pointz=z=z;.

We next evaluate and integrate the Wess—Zumino and Solari—-Kochetov terms in the tunneling
action, denoting these Hyy, andl g as before. Since the calculations are somewhat lengthy, it is
best to do the two terms separately. We begin Wjh, considering instanton 1, i.e., that given by
(6.13 and(6.14). After some algebra, we obtain

B mo(tanht) w
qwz(™) =~ T anht) 2 5°

cit, (6.23

wherer, and 5 are polynomials of degree 2 and 3, whose explicit form we do not require. What
we do need is the differentia,,,dr. If we make the substitution

v =tanht, (6.29

and factorize the polynomials, and 73, we obtain

flawz(T)dTZ—fl w-vglv—ve) - 6.25

~1(v—v1)(v—vy)(v—vs)

where

1+h

12
—~) (=1xv1-\N), (6.26

1

1% LZZK

—V1-R2=\1-R2-»

U34= \/K ' (627)
A
vg=— \/—~ . (6.28
1-h?

The integral is best done by decomposing the integrand into partial fractions. We find
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- - 1
(v—v3)(v—va4) _ N BB , 6.29
(v—v)(v—vy)(v—vs) v—Us V—V1I VU,
where
B= " (6.30
T .
Thus,
Jw dr=—|In[ "5 ) 1 gin| =YL | _ gy 202 6.3
7waWZ 7T=—11Nn _1_05 ﬁn _1 _ﬂn —1—U2 ( . :D
The ratio involvingus is
1-vsg \/—+\/1—F\2 _ 63
=Ry, 6.3
-1- Usg \/— V1— h2
while the 8 terms combine to yield the logarithm of
1-vwot+(vyo— vl) h\/—+\/ AV1-h2 6.33
1-vy05—(vy—vy) h\/— J1=avV1i- hz_ '
Collecting together the various parts, we have
| +5)! R+ +5 h ——InR (6.39
=— n nR,. .
wz,1 j 111 \/ﬁ 2

We have added another suffix to show that this pertains to instanton 1.
The next step is to integrate the Solari—Kochetov term. For this we firstpgedFrom Egs.
(6.4) and(2.17) we find

¢5K:(1Jli—lziz)f[_2(1_4?Z+(?Z)2)“‘((1+7Z)2+ 3(z-2)%)+2h(1-Z22%)]. (6.3

(The reader may verify that as— +©, ¢5— w;. This provides a check on our earlier calcula-
tion of w4.) After a little more work, we find

Ds— w1= (1+zz)2[ 3(1-722)%+3\(Z-2)%+2h(1-722%) +h3(1+22)%]. (6.3

This quantity is the integrand in E¢.15 for | g, and so it only needs to be evaluated along the
instanton trajectories. We may simplify the calculation by using energy conservation to eliminate
the term in\. When this is done, we obtain

—(1-h)+(1+h)zz
1+7z

| sk= 2T<lj'ﬁf dr (6.37

The integrals are evaluated in the same way,gs. With the same change of variables, and
definitions ofv4 to v as before, we get
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2?1(1—?12)1’2f1 dv h fl 1 1 g
lgx=— _ =- - v
S W(1=h) J-1v-v)(v—vy) Vi-aJ-1lv—vp v—up
h
=———=—InR,. (6.38
11—\

Note that this isO(1/j) relative to the Wess—Zumino contribution. Adding together the two
contributions, we obtain the total action

~ jh ~

Ny

In the second term we have used the formila (/2)h= jh.

We now turn to the prefactdP. In evaluating this, we may ignore differences of ordgr, 1/
i.e., we may replacg by j, h by h, etc. The quantity consists of a product of various factors, all
of which are already available. Thus,

1
it

i i
N w(1+25)% (6.40
The factorsz+ and{_ are found by differentiating the formul#6.13 and(6.14) and examining
the limits 7— * . In this we way we get

{-=—12zy, (6.42)

(=27 (6.42
NNy
Finally,
2w 4 IN(1—h?) 4 YA (1-h?) 6.43
wi—w  (1-h2+N) -2\ (1-h?) [J1-hZ-\]? '
Making use of the identity
2z, _ 2\1/2
mg—(l h<)~, (6.44
we obtain
4] )\1/2(1—h2)3/2
=——= (6.45

7 1-h?>-\

We can now obtain the contribution of instanton 1 to the tunneling amplitude by substituting
Egs.(6.39 and(6.45 in the general formul@4.10. Denoting this quantity byA;, we have

A=2w\|Ple'""™? (6.46

where the additional factor &' ™2 arises from the fact tha®<0.

It remains to obtain the tunneling amplitude from the second instanton. Because the two
instantons are related by a complex shifttinit is apparent that the actiorlg , (where we
temporarily add suffixes to distinguish the twand the prefactor®, , will be given by the same
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analytic expressions. However, the phases to be assigned to the actioR® aavé somewhat
ambiguous. Unlike the case of a particle moving in one dimension, the prefactor in the general
formula does not arise as the determinant of a Hermitian quadratic form, and there is no unam-
biguous way for factors af to get partitioned between the prefactor and the exponent. The surest
way of fixing the relative phases is to appeal to a physical argument. Alternatively, this can be
regarded as fixing the signs of the amplitudesanda; .

For the Fg Hamiltonian(6.4), let us work in theJ, basis|j,m) with the standard definition of
the raising and lowering operatads , so that the matrix elemen{$,m=1|J.|j,m) are all real.
Then the matrix oH is completely real, and since it is Hermitian, all its eigenvalues and eigen-
vectors are also real. Second, sizge z, andz;= —z, are real, the statdg; ;) are real, i.e., all
the matrix elementséj,m|z ;) are real. Thus the amplitudes anda; are real. It follows that the
amplitudeK is real, and so is the one-instanton contribution to it, Mg+ A, is real. Therefore,
we must have

Equation(6.47) determinesA,, and the energy splittingh completely. However, it is still
useful to investigate the origin of the phase difference in the actions a little more closely. As
readers will have noticed already, the integrand in(B5) is singular ab =v, andv =v5, since

for h<1—\,

Ul<_l, _l<1)2<1, _1<U5<1. (64&

Correspondingly, botR; andR, are negative, and both Ry and InR, must be interpreted to have

an imaginary part ofr modulo an integer multiple of 2 The question is what the assignment
should be for the two instantons. We can see this most easily by examining the diffarkpge
=lwz2—lwzz1. To this end, we note that the WZ one-form may be written as a complex one-form
in the z plane,

1
1+2z72)

dz
zd—Z—ZZ)

ayzdr= dz=F(z)dz, (6.49

with z(z) given by Eq.(6.11). Thus,l\y; may be written as a-plane contour integral d¥(z) from
Zo to —zq. In fact, apart from a scale factor af), the substitution(6.24) is tantamount to
changing the integration variable 9 so we see that(z) has poles atyv, andzyvs (the one at
Zov, does not matter The two instantons go around these poles in opposite senséd, sois
given by integrating=(z) along a closed contour fromy to —z, and back taz,:

Alyz=(2j+1) f}g F(z)dz (6.50

The residues at the poles can be read off the partial fraction decompd&it28h, yielding

VI-A]

This is precisely what we would obtain from E@.47), for that would have us assighi« for

InR, (and InR,) for the two instantons.
The energy splitting is given by

1_

(6.5))

lwz2—lwz1=(2j+ )7

A=A, +A%. (6.52

To compare with previous results, it is useful to rewrite this as follows. Consider the real part of
the action, Eq(6.39),
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0.1 0.2 0.3 0.4 0.5

FIG. 1. Comparison between numeri¢ablid line) and analytidEq. (6.55), dashed lingresults for the splitting between
the two lowest levels in the ganodel. The parameters ake=0.321 K, k,=0.229 K, close to the measured values.

- ih -
In[Ry|— ———In|R,]. 6.53

Ny

The ratiosR, andR, are defined in terms of the fiell If we write h=h-+0O(1/j), and expand
in powers of 1, we discover that

I'n=—Rel= '+1
o= —ReI=| T35

1 ih o
i+ 5 InlRy — —E—In|Ryl +0(j 1), (654

Ny

whereR; is obtained fronR; by simply deleting the tildes above thés. Note that the corrections
are of O(1/j), notO(1). These are beyond the accuracy to which we are working, so we simply
drop them henceforth.

Thus, the complete expression for the splitting is

FO:

8
A= \/;wFl’ZeFOCosA. (6.55

We give the expressions fétr, I'y and A for ready reference:

)\1/2( 1— h2)3/2

8 (659
. 1 | [Jl—hh& ih | [\/(1—>\)(1—h2)+hﬁ] 657
=|j+=/In - n : :
S ETA Ny el N TR T mr o S
A=Iml-2=j (1 " ) (6.59
=lml—-5s=jn| 1- —=]|. .
2 1-\

Our answer forA is identical to that found by means of the discrete WKB method in Ref. 34
[see Egs(5.1)—(5.5)]. Naturally, the points at the which the tunnel splitting vanishes are the same,
too. In Fig. 1, we compare our result with a numerical evaluatiom\offhe error rises from
~1.5% ath=0 to ~35% at the largest values bf shown. However, given that our formula is
only asymptotically valid ag— oo for fixed h, and that it fits the overall behavior over five orders
of magnitude, this is quite acceptable. The approximation is clearly not unifomTme energy
barrier decreases with increasihg and since semiclassical answers for splittings are generally
more accurate the higher the barrier, the trend in the error is not surprising either.

The nontrivial aspect of this calculation is that there are cbrrections in the quenching

condition. If we simply take the energy expectatidz,z) =(z|H|z)/(z|z) in the Wess—Zumino
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term, we have the problem that the anisotropy and field terms scalejwdifierently if 1/j
corrections are included. This is how the quenching condition was found in Ref. 9, butjthe 1/
corrections were never considered, so it was somewhat serendipitous that the condition that was
stated turned out to be rigorously correct. By including the SK correction, this deficiency is now
repaired.

VIl. DISCUSSION

We have shown in this article how to extend to the spin coherent-state path integrals, the
methods used to calculate tunnel splittings from the Feynman path integral. Key to this extension
is the inclusion of the extra phase of Solari and Kochetov. The examples we discuss show that
with this inclusion, the spin coherent-state path integral is accurate and effective. It must therefore
be possible to put the spin coherent-state path integral on the same sound mathematical footing as
the conventional Feynman integral.

Our calculations also bear on the old question of the correct “tunnelling action” for spin. In
their complex periodic orbit study of the rotational spectrum of thg @Blecule for example,
Robbinset al*® take, without proof, the differential of the action to be

ds= cosfd g, (7.1

o1
I35

where ¢ and ¢ are the usual spherical polar coordinates. Harter and Patténssm the quantity
[j(j+1)]¥?instead of {+ 1/2). These are both attempts to include the first quantum corrections.
From our perspective, these corrections are somewhat ambiguously defined, since they could
equally well be absorbed into the prefac®iin the splitting. Even if we do regard E¢.13 as

the tunneling action, it is clear that there is no univeisalj + 1/2 rule. The Solari-Kochetov

term must be included. This term makes no contribution when it is a cor{stachtherefore equal

to wq). This happens in two very commonly studied casds:J-H (Larmor precession and
H=0iJiJx, i,k=X,y,z (a homogeneous second order polynomial,in J,, andJ,). Indeed, the
special LMG model studied in Sec. V is of the second type. In general, however, the Solari—
Kochetov phase will influence the first quantum corrections in any other semiclassical formula.
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APPENDIX: ZERO-POINT MOTION PROPAGATOR
Here we derive Eq4.6). We first apply an S(2) rotation to

Hiniial(Z,2) = wl(z—zi)(?—zi*)+%wz(z_zi)2+%w§@_zr)2 (A1)

(1+7'z)*

in order to placez;, 7 at the origin, and to make the coefficiem} real. The result is

_ 1 1
(Ulzz+ —w222+ _(Jt)zi2 . (AZ)

H(z,z)=2j > >

In the semiclassical limit, =1, we may ignore the curvature of the phase space and, after
rescaling\/2jz—z to account for the difference in the coefficient in the kinetic terms, identify
H(z,z) with the coherent state classical Hamiltonian for the squeezed harmonic oscillator
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A=w,a’a+ tay(a’ +a?). (A3)
The Bogoliubov transformation

b=cosh#a+sinhga’,

(A4)
b'=sinh#a+ coshsa’,
reduces the Hamiltonian
Flequeczed @ cosh B(ata+ 3)+ 10 sinh 26(a’+a?) (A5)
to
Hqueczer 2(bTb+ 3), (6)
and so we identify
Q cosh¥=w,, (A7)
Q sinh 20= w,.
The eigenvalues dfl are therefore
En=0(n+3)— z0;. (A8)

The operatora’a, a? and a” generate the Lie algebra(@ul). Therefore either the flat phase-
space coherent state path integral or standaft], Budisentangling method%® can be used to
derive

(¢ileFT| &) =D~ Y2exp[D~Y(Z;¢i— Lsinh 20 sinhwT(L2+¢2))}e~ H2o1T, (A9)
where
D=e“Tcosit 6—e “Tsintt 4, (A10)
and the harmonic oscillator coherent stdtgsare defined by
|¢)=expZa’l0), al0)=0. (A11)

In the largeT limit, and with ¢; andzf both at the origin, this reduces to

- [ 2w
<O|e7HT|0>_)(COSh0)7lef(1/2)(w7w1)T: w+—w1e7(l/2)(w7wl)T. (A12)

We now rotate back to the original. Taking note of the transformation properties of {ags,
we get

) 2w
Ki=(1+zz)? e~ (VA(o=e)T (A13)
wt+w;

as claimed.
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