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We use an instanton approximation to the continuous-time spin coherent-state path
integral to obtain the tunnel splitting of classically degenerate ground states. We
show that provided the fluctuation determinant is carefully evaluated, the path
integral expression is accurate to orderO(1/j ). We apply the method to the LMG
model and to the molecular magnet Fe8 in a transverse field. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1521797#

I. INTRODUCTION

One of the most convincing demonstrations of quantum effects in a near-macroscopic s
is provided by the dramatic oscillation1 of the level splittings in the molecular magnet Fe8 as
function of an external magnetic field. This system is small enough that one can obtain a
energy levels by a trivial numerical diagonalization of a 21321 Hamiltonian matrix, but little
insight into the phenomenon can be obtained this way. However, by thinking of the spin vec
an almost classical object, the oscillations can be understood as quantum interference b
competing tunneling paths for the large (J510) spin between two classically degenerate minim

The natural tool for studying tunneling in the semiclassical limit is the path integral. For
this should be the spin@SU~2!# coherent-state path integral,2,3 or its phase space relative.4,5 It is
easy to establish that this formalism gives a good qualitative description of the tunn
process—6–8 including the dramatic topological quenching of the tunneling9 that makes the Fe8

results so interesting. Unfortunately, a straightforward application of the spin coherent-stat
integral to compute the semiclassical propagator10 or the tunnel splitting11 yields results that are
incorrect beyond the leading exponential order. In other words, the first quantum correctio
J→` are incorrectly obtained.

This issue appears for other systems that involve, or can be modeled in terms of, lJ
quantum mechanical spins. Examples include molecular rotors,12,13 the Lipkin–Meshov–Glick
model of certain collective excitations in nuclei,14,15 and superdeformed rotating nuclei.16 The
large spin limit is also valuable as an approximate method for studying magnetic orderin17,18

including ‘‘order from disorder’’ effects in such systems.19 In all these cases the first quantu
corrections are not known. Often they are fixed by heuristic orad hocconsiderations. Lieb20 puts

a!This paper is dedicated to the memory of Victor Belinicher, who was lost when Siberia Airlines flight 1812 was sho
over the Black Sea, Oct. 4th, 2001. Victor made many contributions to physics, in particular to the spin tun
problem.

b!Author to whom correspondence should be addressed. Electronic mail: m-stone5@uiuc.edu
480022-2488/2003/44(1)/48/23/$20.00 © 2003 American Institute of Physics
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rigorous bounds on the partition function of quantum spin systems, but he does not determ
1/J corrections precisely.

In principle, a correct evaluation of the general spin propagator in the semiclassical
should resolve all these difficulties. This propagator is a notoriously refractory object, how
and its parent, the spin path integral, has a reputation for being mathematically ill defined—
least harder to deal with than the conventional Feynman path integral, whose mathematical
ties have been well studied. Many authors have therefore sought other ways of attaini
semiclassical limit, but none applies to general Hamiltonians. For the calculation of spin t
splittings, although there do exist other path integral approaches which solve particular pro
correctly,21,22 the resulting calculations tend to be intricate, and the simplicity seen in the con
tional Schro¨dinger particle case is lost. Further, they do not lead to generally applicable rec

Recently, however, it has begun to be appreciated that the problem with the spin cohere
calculation is simply that the fluctuation determinant has an ‘‘anomaly,’’ and that, once the ‘‘
phase’’ provided by the anomaly is taken into account, the coherent state path integral
correct answers. This extra phase seems to have been originally discovered in the 19
Solari,23 but the significance of his result was not widely appreciated. It was then rediscover
one of the present authors24 and also by Vieira and Sacramento.25 The interpretation of the extra
phase as an ‘‘anomaly’’ is due to the remaining authors of the present article.26

The present article is another step in the larger program of developing the spin semicla
limit. The discussions of the extra phase cited in the previous paragraph were restricted to th
of quantum evolution between generic values of the classical degrees of freedom. However
we calculate the tunnel splitting, the endpoints of the instanton path lie at local minima o
classical energy and, just as in the Schro¨dinger particle case, the Jacobi fluctuation operator ha
zero mode which makes the inverse of its determinant singular and the general formula
propagator inapplicable. Thus our earlier work was not directly amenable to calculating the
splitting. The present article fills this gap.

In the next section we provide a brief review of the spin coherent-state path integral, incl
the correction to the fluctuation determinant prefactor. In Secs. III and IV we discuss the co
cations that ensue when there is a zero mode and provide a general formula for the one-in
contribution to the tunneling amplitude. In Sec. V we apply this formula to the relatively sim
case of the Lipkin–Meshkov–Glick~LMG! model,14 and in Sec. VI we evaluate the tunn
splitting for a realistic model of Fe8 .

As explained above, our aim is not to find formulas for the energy splittings that ca
compared with experiment. After all, the splittings for both model Hamiltonians can easi
found numerically for moderate values ofJ, sayJ<20.27 Instead we are using these models
nontrivial test cases. It is our hope that our methods will prove practical in other situatio
multispin problems, for example—where numerical work is not so easy.

II. SPIN COHERENT STATES

We follow the conventions in Ref. 26 and define our spin coherent states28 to be

uz&5exp~zĴ1!u j ,2 j &, ~2.1!

whereu j ,2 j & is the lowest spin state in the 2j 11-dimensional representation of SU~2! andĴ1 is
the spin algebra ladder operator obeying

Ĵ1u j ,m&5Aj ~ j 11!2m~m11!u j ,m11&. ~2.2!

The variablez is a stereographic coordinate on the unit sphere withz50 at the south pole~spin
down direction! andz5` at the north pole~spin up!.

These coherent states are not normalized, but depend holomorphicly onz. This means that
matrix elements such aŝz8uÔuz& are holomorphic functions of the variablez, and anti-
holomorphic functions of the variablez8.
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The inner product of two coherent states is

^z8uz&5~11 z̄8z!2 j , ~2.3!

and they satisfy the overcompleteness relation

15
2 j 11

p E d2z

~11 z̄z!2 j 12 uz&^zu. ~2.4!

Hered2z is shorthand fordx dy. The factor 1/(11 z̄z)2 combines with this to make the invarian
measure on the the two-sphere. The remaining factor in the integration measure, 1/(11 z̄z)2 j ,
serves to normalize the coherent states.

We may use the overcompleteness relation to derive a formal continuous-time path in
representation for the propagator

K~ z̄ f ,z i ,T!5^z f ue2 iĤ Tuz i&. ~2.5!

We insertN intermediate overcompleteness relations into~2.5! and consider the limitN→`. This
leads to the path integration formula24

K~ z̄ f ,z i ,T!5E
z i

z̄ f dm~ z̄,z!exp$S~ z̄~ t !,z~ t !!%, ~2.6!

where the path measuredm is

dm~ z̄~ t !,z~ t !!5 lim
N→`

)
n51

N
2 j 11

p

d2zn

~11 z̄nzn!2 , ~2.7!

and the actionS( z̄(t),z(t)) is

S~ z̄~ t !,z~ t !!5 j $ ln~11 z̄ fz~T!!1 ln~11 z̄~0!z i !%1E
0

TH j
zGz2 z̄ż

11 z̄z
2 iH ~ z̄,z!J dt. ~2.8!

The c-number Hamiltonian,H( z̄,z), is obtained from the operatorĤ by

H~ z̄,z!5^zuĤuz&/^zuz&. ~2.9!

The pathsz(t), z̄(t) obey the boundary conditionsz(0)5z i , z̄(T)5 z̄ f , but z̄(0), z(T), being
actually z̄(01e) andz(T2e), are unconstrained, and are to be integrated over.24

The manipulations leading to the continuous time path integral are heuristic, but with c
treatment the formal path integral should be as useful as the familiar configuration space Fe
path integral. In particular the semiclassical, or largej , propagator can be obtained from a s
tionary phase approximation to the path integral.26

The stationary phase approximation requires us to seek ‘‘classical’’ trajectories for whS
remains stationary as we vary the functionsz(t) andz̄(t). These stationary paths will generally b
complex. If we writez asx1 iy and z̄5x2 iy , then, except in special cases,x andy are not real
numbers. In particular there is no requirement thatz̄(0) be the complex conjugate ofz(0)[z i ,
nor thatz(T) be the complex conjugate ofz̄(T)[z̄ f . Bearing this in mind, we make variation
about a chosen path, and keep track of all boundary contributions resulting from integratio
parts. We find that
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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dS5
2 jz~T!

11 z̄ fz~T!
d z̄~T!1

2 j z̄~0!

11 z̄~0!z i

dz~0!

1E
0

TH dz~ t !S 2 jzG

~11 z̄z!2
2 i

]H

]z
D 1d z̄~ t !S 2

2 j ż

~11 z̄z!2
2 i

]H

] z̄
D J dt. ~2.10!

Demanding that this change in the action be zero requires the trajectory to obey Ham
equations

zG5 i
~11 z̄z!2

2 j

]H

]z
, ż52 i

~11 z̄z!2

2 j

]H

] z̄
, ~2.11!

together with the conditionsdz(0)50 and d z̄(T)50. We can therefore impose the bounda
conditionsz(0)5z i , z̄(T)5 z̄ f , but z̄(0) andz(T) are free to vary, and so are determined by
equations of motion. This is important because Hamilton’s equations are first order in time a
cannot simultaneously impose initial and final conditions on their solutions.

The dynamically determined endpoints can also be read off from the Hamilton–Jacob
tions that follow from~2.10!. These are

]Scl

]z̄ f

5
2 jz~T!

11 z̄ fz~T!
,

]Scl

]z i

5
2 j z̄~0!

11 z̄~0!z i

. ~2.12!

The Hamilton–Jacobi relations also tell us that

]Scl

]z̄ i

5
]Scl

]z f

50, ~2.13!

showing thatScl is a holomorphic function ofz i , and an anti-holomorphic function ofz f . These
analyticity properties ofScl coincide with those ofK. This is reasonable since expScl is the leading
approximation toK, and we would expect analyticity to be preserved term-by-term in the larj
expansion. Finally, we have the Hamilton–Jacobi equation

]Scl

]T
52 iH ~ z̄ f ,z~T!!. ~2.14!

In Ref. 26 we showed that after we compute the Gaussian integral over small fluctu
about the stationary phase path the resulting semiclassical approximation to the propagato

Kscl~ z̄ f ,z i ,T!5S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Scl

]z i]z̄ f

D 1/2

expH Scl~ z̄ f ,z i ,T!1
i

2
E

0

T

fSK~ t !dtJ ,

~2.15!

or a sum of such terms over a set of contributing classical paths. In this expression

fSK~ z̄,z!5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D ~2.16!

is the ‘‘extra-phase’’ discovered by Solari, Kochetov, and Vieira and Sacramento.
The form~2.15! is valid only if the prefactor is finite. When we compute instanton contri

tions to tunneling there is a zero mode in the quadratic form for small fluctuations, an
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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resulting divergent integral over this mode is to be replaced by an integral over a colle
coordinate labeling the instant that the tunneling event occurred. This we will describe in th
section.

We conclude this section by writing the Solari–Kochetov phase in an alternative way tha
prove useful later. We first write

fSK5fSK8 2 iaWZ , ~2.17!

where

fSK8 5
~11 z̄z!2

2 j

]2H

]z] z̄
, ~2.18!

aWZ5 i
11 z̄z

2 j S z
]H

]z
1 z̄

]H

] z̄ D . ~2.19!

Along the classical trajectory, the equations of motion allow us to trade in the partial deriva
]H/]z and]H/] z̄ for zG and ż, so that

aWZ~t!5
zG clzcl2 żclz̄cl

11 z̄clzcl
. ~2.20!

This is nothing but the Wess–Zumino or kinetic term in the classical action, and was antic
in our notation. Hence,

i

2 E0

T

fSK~ t !dt5
1

2 E0

T

aWZ~ t !dt1
i

2 E0

T

fSK8 ~ t ! dt. ~2.21!

The advantage of this rewriting is that the integral ofaWZ is needed to findScl anyway, and it
is generally easier to integratefSK8 than fSK. In fact, fSK8 is essentially the Laplacian of th
energy on the unit sphere,29

fSK8 5
1

2 j
¹V

2 H. ~2.22!

III. DEALING WITH THE ZERO MODE

As is usual in calculating tunneling effects, it is convenient to perform the computatio
Euclidean~imaginary! time. For the sake of symmetry we will take the time evolution as runn
from 2T/2 to T/2 and the propagator~2.15! becomes

K~ z̄ f ,z i ,T!5@D~T!#2 1/2expH Scl1
1

2 E2T/2

T/2

fSKdtJ , ~3.1!

where againfSK is the integrand of the Solari–Kochetov phase

fSK5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D , ~3.2!

evaluated alongzcl(t), z̄cl(t), andD(T) is the fluctuation determinant. The latter may be found
the ‘‘shooting method.’’ As explained in Ref. 26, this involves solving the equation

L̂CL[F B~t! 2]t1A~t!

]t1A~t! B̄~t!
G S cL

c̄L
D 50, ~3.3!
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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where

A5fSK5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D ,

B5
]

] z̄

~11 z̄z!2

2 j

]H

] z̄
, ~3.4!

B̄5
]

]z

~11 z̄z!2

2 j

]H

]z
,

with the initial condition

CL~2T/2!5S cL

c̄L
D

2T/2

5S 0
1D . ~3.5!

Given the solution of this equation, we read off the determinant asD(T)5c̄L(T/2). In real time,
and when there are no problems with zero modes, this recipe leads to the prefactor appe
~2.15!.

Now assume that the coherent statesuzi& anduzf& represent spins pointing along the directio
of two equal-energy global minima of the HamiltonianĤ. Because the gradient of the energ
vanishes at both ends, the classical path joiningzi to zf has the character of an instanton: as t
total time taken to traverse the path becomes longer and longer most of the motion still take
in an ‘‘instant,’’ a fixed period short in duration compared to the total. WhenT becomes infinite,
the epoch of this ‘‘instant’’ is arbitrary and this leads to a zero-eigenvalue mode in the fluctu
operator. ThusD(T) is formally zero. The problem of dividing by the square root of zero
avoided by introducing a collective coordinate for the tunneling epoch, and the formal infin
the one-instanton contribution to the propagator becomes a factor ofT.

The classical instanton solution can be writtenzcl(t2t0), z̄cl(t2t0) wheret0 is the epoch at
which the tunneling occurs. Since, in the largeT limit, the action for the tunneling event i
independent oft0 , the normalized zero mode is

C05S c0~t!

c̄0~t!
D 5

Ag

11 z̄clzcl
S żcl~t!

zG cl~t! D , ~3.6!

whereg is chosen to make

E
2T/2

T/2

C0
t C0dt5E

2T/2

T/2

~c0
21c̄0

2!dt51. ~3.7!

The divergent Gaussian integration over the coefficient of the zero mode is replaced
integral over possible tunneling epochst0 by inserting a factor of

15
1

A2pa
E

2T/2

T/2

dt0S ]F
]t0

Dexp2
1

2a
F 2~t0! ~3.8!

into the path integral, with the choice

F~t0!5E
2T/2

T/2

dt8
1

11 z̄clzcl~t82t0!
C0

t ~t82t0!S z~t8!

z̄~t8! D , ~3.9!

and then proceeding in a manner similar to that used for quantum mechanical instantons
Feynman path integral:30,31 we first setz5zcl(t2t0)1dz(t2t0) and similarly z̄. Next, after
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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observing that everything depends only on the combinationt2t0 , we change variablest2t0

→t. The integral overt0 is then trivial and gives a factor ofT. Meanwhile, after an integration
by parts and ignoring the fuctuations of (z,z̄) about (zcl ,z̄cl) which are of higher order, the
Jacobian factor becomes

]F
]t0

5E
2T/2

T/2

dt8C0
t 1

11 z̄clzcl
S żcl~t8!

zG cl~t8! D5
1

Ag
. ~3.10!

The quadratic term in the exponent is a projector onto the zero mode and replaces the va
eigenvalue by 1/2j a. The net result is the replacement

@D~T!#2 1/2→TA j

pg FD~T!

l0
G2 1/2

, ~3.11!

wherel0(T) is the eigenvalue that vanishes asT becomes large.
The desired ratio, Det8(L̂)5D(T)/l0 , is equal toc̄L(T/2)/l0(T). We now turn to the evalu-

ation of this ratio. As we shall see, we will not have to obtainc̄L(T/2) andl0(T) separately.
The eigenvalue problem is

L̂Cl5lCl ; Cl5S cl

c̄l
D , ~3.12!

where L̂ is the same operator as in~3.3!, but with boundary conditionscl(2T/2)5c̄l(T/2)
50.

For finiteT the shooting method solution,CL , is close to, but not quite equal to, the ‘‘sma
eigenvalue’’ eigenfunction,Cl0

. AlthoughCL obeys the boundary condition att52T/2, it does
not quite obey the boundary condition att51T/2. In turnCl0

is close to, but not quite equal to
the infinite-T zero-eigenvalue mode,C0 .

Now C0 obeys the equationL̂C050, but no particular boundary conditions at6T/2. There
is a second solution of this equation,J05(j0 ,j̄0) t. The Wronskian of these solutions

W~C,J!5Uc0~t! j0~t!

c̄0~t! j̄0~t!
U ~3.13!

is independent oft. Next we observe that the differential equation~3.12! can be converted to an
integral equation

Cl~t!5CL~t!1lE
2T/2

t

dt8G~t,t8!Cl~t8!

5CL~t!1
l

W E
2T/2

t

dt8@C0~t!J0
t ~t8!2J0~t!C0

t ~t8!#Cl~t8!. ~3.14!

SinceCL(t) obeys the boundary conditions at2T/2, and the integral vanishes at this point, w
can find the eigenvaluesl by requiring that the lower component ofCl vanishes att5T/2. We
are only interested in solutions wherel5l0 is very small. Because of this we can approximate
Cl(t8) appearing in the integral in~3.14! by the zeroth-order solution,CL . In this way we see
that

c̄L~T/2!

l0~T!
52

1

W E
2T/2

T/2

dt@c̄0~T/2!J0
t ~t!2 j̄0~T/2!C0

t ~t!#CL~t!. ~3.15!
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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The integral in~3.15! may be evaluated using only the asymptotic behavior ofC0 andJ0 , which
involve zcl and z̄cl . This asymptotic behavior depends only on the form of the Hamiltonian in
neighborhood of the endpoints.

In all cases we consider the instanton solutions have the property thatz̄cl5zcl* at their end-
points. Here the asterisk denotes a true complex conjugate as opposed to the formal co
denoted by the bar. The coincidence of the formal and true conjugate occurs because
endpoints lie on the real unit sphere.32 Taking this observation into account, we parametrize
Hamiltonian in the vicinity of the initial stationary point in terms of two frequencies,v1,2, as

H~ z̄,z!'
2 j

~11zi* zi !
2 Fv1~z2zi !~ z̄2zi* !1

1

2
v2~z2zi !

21
1

2
v2* ~ z̄2zi* !2G . ~3.16!

SinceH( z̄,z) is real, so isv1 . Also, because the initial point is an energy minimum, we must h
v1.uv2u. We can therefore define a real mean frequency,v, by

v2[v1
22v2v2* . ~3.17!

A similar expression holds atzf with the same values ofv1 andv2 provided the degeneracy in th
Hamiltonian is due to some symmetry.~There might be an extra phase factor inv2 , but this makes
no difference to the subsequent calculation.!

As t becomes large and negative,B→v2 , B̄→v2* andA5fSK→v1 , so we see that

S c0

c̄0
D→S c02

c̄02
Devt; S j0

j̄0
D→S j02

j̄02
De2vt, ~3.18!

where

F v2 2v1v1

v1v1 v2*
G S c02

c̄02
D 50. ~3.19!

There is an analogous relation for (j02 ,j̄02) t. We can use the Wronskian to connectC02 with
J02 , so everything can be expressed in terms ofW and the normalizationg. Similar remarks
apply toC01 andJ01 . If we write

S cL

c̄L
D 5aS c0

c̄0
D 1bS j0

j̄0
D , ~3.20!

and apply the boundary condition at2T/2, we can finda andb, and hence

S cL~t!

c̄L~t!
D 5

1

W F2j02evT/2S c0~t!

c̄0~t!
D 1c02e2vT/2S j0~t!

j̄0~t!
D G . ~3.21!

Inserting this into~3.15! and noting that thec0 c̄0 terms dominate, we find

c̄L~T/2!

l0~T!
52

1

W2 j02j̄01evTE
2T/2

T/2

~c0
21c̄0

2!dt, ~3.22!

or

c̄L~T/2!

l0~T!
5

uv2u2

c02c̄01

evT

4v2
. ~3.23!

Thus the one-instanton contribution to the propagator is
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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K~ z̄f ,zi ,T!5expH Scl1
1

2 E2T/2

T/2

fSKdtJA j

pg
Fc02c̄01

uv2u2 G1/2

~2vTe2 ~1/2! vT!. ~3.24!

Note thatc0 , c̄0 are proportional toAg, thusAg drops out and we can simply putg51 in the
sequel. Let

żcl'vz2evt, t→2`,
~3.25!

zG cl'vz̄1e2vt, t→1`.

Then

c02c̄015
v2z2z̄1

N
~3.26!

with

N5~11 z̄izi !~11 z̄fzf !. ~3.27!

Using this we can write

K~ z̄f ,zi ,T!5expH Scl1
1

2 E2T/2

T/2

fSKdtJA j

pN
F z̄1z2

uv2u2 G
1/2

~2v2Te2 ~1/2! vT!. ~3.28!

IV. EXTRACTING THE ENERGY SPLITTING

Again assume that the coherent statesuzi& and uzf& represent spins pointing along the dire
tions of two equal energy global minima of the HamiltonianĤ. Let uc i , f& be the approximate
~tunneling-ignored! energy eigenstates localized near these minima. These should have
phases chosen so that when tunnelingis included the eigenstates become the linear combinat

uc6&5
1

&
~ uc i&6uc f&). ~4.1!

If the energies of these states are

E65Eav6
1
2 D, ~4.2!

andaa[^zauca&, then asT becomes large the coherent-state propagator,

K~ z̄f ,zi ,T!5^zf ue2ĤTuzi&, ~4.3!

is given by

K~ z̄f ,zi ,T!'afai* e2EavT sinhS 1

2
DTD ,

5afai* e2EavTS 1

2
DT1

1

6

D3T3

23 1¯ D . ~4.4!

We will find the energy splitting,D, by evaluatingK in the one-instanton approximation an
comparing with this expression.

It is necessary to find expressions for the amplitudesai andaf . These are obtained by lookin
at
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



. This

in–

57J. Math. Phys., Vol. 44, No. 1, January 2003 Spin coherent-state path integrals

Downloaded 0
K f5^zf ue2ĤTuzf&'uaf u2e2EavT, ~4.5!

and

Ki5^zi ue2ĤTuzi&'uai u2e2EavT, ~4.6!

both evaluated in the harmonic approximation. This evaluation is performed in the Appendix
results in

K f5~11 z̄fzf !
2 jA 2v

v1v1
e2 ~1/2!~v2v1!T ~4.7!

and a similar expression forKi . Thus

1

2
D5

eScl1 ~1/2!*2T/2
T/2 (fSK2v1)dt

@~11 z̄fzf !
j~11 z̄izi !

j #
A j

pN
@2v~v1v1!#1/2vF z̄1z2

uv2u2 G
1/2

. ~4.8!

Now

2v~v1v1!

v2
2 5

2v

v12v
~4.9!

so finally

D52vAPeI , ~4.10!

where

P5
j

pN

2v

v12v
z̄1z2 ~4.11!

and

I 5 j E
2`

`

awz~t!dt1
1

2 E2`

`

~fSK2v1!dt ~4.12!

5S j 1
1

2D E
2`

`

awz~t!dt1
1

2 E2`

`

~fSK8 2v1!dt, ~4.13!

whereawz is the kinetic term

aWZ~t!5
zG clzcl2 żclz̄cl

11 z̄clzcl
~4.14!

in the classical action—the boundary terms having canceled with the (11 z̄fzf)
j (11 z̄izi)

j in the
denominator. In Eq.~4.13!, we have used the alternative form~2.17! of the Solari–Kochetov
phase.

V. THE LMG MODEL

In this section we will evaluate the tunnel splitting in the relatively simple case of the Lipk
Meshkov–Glick~LMG! model.14

We will take the LMG Hamiltonian to be
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Ĥ5
w

&~2 j 21!
~ Ĵ1

2 1 Ĵ2
2 !1

jw

&
, ~5.1!

with w.0. For half-integerj , the splitting vanishes due to Kramers’ theorem, and we will indic
below how this comes about. Unless stated otherwise, we will be thinking of integerj in what
follows. SinceĴ1

2 1 Ĵ2
2 52(Ĵx

22 Ĵy
2), we see that the classical minima lie along6 ŷ. The Hamil-

tonian which appears in the path integral is

H~ z̄,z!5
^zuĤuz&

^zuz&
5& jw

z21 z̄2

~11 z̄z!2 1
jw

&
. ~5.2!

By setting]H/]z5]H/] z̄50, the classical minima are found to be at the points

~z,z̄!5~ i ,2 i !, ~2 i ,i !, ~5.3!

which correspond to the6 ŷ directions of the Cartesian axes. The explicitly added constant iĤ
is chosen to makeH( z̄,z) zero at these points.

Now we write down the equations of motion for the instantons

zG5&w
z2 z̄3

~11 z̄z!
,

ż52&w
z̄2z3

~11 z̄z!
. ~5.4!

We seek a solution which goes from (zi ,z̄i)5(2 i ,i ) to (zf ,z̄f)5( i ,2 i ). The two equations in
~5.4! can be decoupled by exploiting the energy conservation conditionH( z̄,z)50 which follows
from the Hamiltonian nature of the trajectory. This can be written as

2~z21 z̄2!1112z̄z1 z̄2z250, ~5.5!

and may be solved to yieldz as a function ofz̄ andvice versa:

z̄52 i
&z1 i

z1& i
, z52 i

& z̄1 i

z̄1& i
. ~5.6!

~Choosing the other solution of the quadratic equation yields instantons running in the op
direction.! Substituting these formulas in the equations of motion yields

zG52 iw~11 z̄2!, ż5 iw~11z2!. ~5.7!

These may be integrated by elementary means to yield

zcl~t!5 i
e2wt2C

e2wt1C
5 i tanhw~t2t0!, ~5.8!

z̄cl~t!52 i
e2wt2C8

e2wt1C8
52 i tanhw~t2t08!, ~5.9!

whereC5e2wt0, C85e2wt08. These constants are not independent. Energy conservation req

C8

C
5
&21

&11
. ~5.10!
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It is useful at this point to find the frequenciesv, v1 andv2 . We have

v15
~11 z̄izi !

2

2 j

]2H

]z] z̄U
i

, v25
~11 z̄izi !

2

2 j

]2H

]z2 U
i

, ~5.11!

where the suffixi means that the derivatives are to be evaluated at the initial point. Carryin
the algebra, we obtain

v15
3

&
w, v25

1

&
w. ~5.12!

Hence,

v5~v1
22v2

2!1/252w. ~5.13!

We can now evaluate the Wess–Zumino and Solari–Kochetov terms in the tunneling
~4.13!. We denote

I WZ5S j 1
1

2D E
2`

`

aWZ~t!, ~5.14!

I SK5
1

2 E2`

`

~fSK8 2v1!dt. ~5.15!

Let us begin withI WZ . If we make use of Eq.~5.7!, we find

aWZ~t!5
1

11 z̄z
~zGz2 z̄ż!52 iw~ z̄1z!. ~5.16!

Substituting the explicit forms and performing the integration we get

I WZ52S j 1
1

2D ln~C/C8!52~2 j 11!ln~11& !. ~5.17!

Now consider the Solari–Kochetov term. We find that

fSK8 52
6w

&

~z21 z̄2!

~11 z̄z!2 . ~5.18!

By energy conservation this equals

3w

&
, ~5.19!

which is precisely equal tov1 . Thus,I SK vanishes, and the total tunneling action is

I 52~2 j 11!ln~11& !. ~5.20!

We must now evaluateP. This consists of a product of various factors, all of which are
hand. Thus,

j

pN
5

j

4p
. ~5.21!
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The factorsz̄1 andz2 are found by differentiating the formulas~5.8! and~5.9! and examining the
limits t→6`. In this we way we get

z2z̄154
C8

C
. ~5.22!

Finally,

2v

v12v
54&~312& !. ~5.23!

Putting these together, we obtain

P52
4 j

p
~413& !

C8

C
5

4 j

p
&. ~5.24!

At this point we have almost all that we need to write down the answer for the tu
splitting—except that we need to consider a second instanton. The trajectory~5.8! and~5.9! passes
close to the north pole of the sphere. By symmetry there must be a second instanton which
near the south pole. This is given by

zcl5 i cothw~t2t0!, z̄cl52 i cothw~t2t08!. ~5.25!

It is obvious by symmetry again that this instanton has exactly the same amplitude as the fi
the total amplitude~and thus the splitting! is obtained by simply doubling the answer from the fi
instanton.~For half-integerj , the amplitudes interfere destructively givingD50.) Hence

D516wS j

p D 1/2

21/4e2(2 j 11)ln(11&). ~5.26!

This agrees with Refs. 21, 22, and 33.@In the last reference putj251/& in Eqs. 4.31–4.34.# We
show in Table I a comparison between this formula and numerical evaluation ofD. The agreement
gets better with increasingj , up to j 518. After this value,D is close to the machine precision, an
the error is largely in the numerical answer.27

For completeness, we note that the average energy is given byEav51/2 (v2v1).

VI. APPLICATION TO FE 8

The LMG model is of interest to us primarily because it provides a check of our forma
against other well-confirmed calculations. In this section we will calculate the tunnel splittin
a family of models that includes a realistic approximation to the molecular magnet Fe8 . The
spin-direction-dependent energy in Fe8 is less symmetric than that of the LMG, and the releva
Hamiltonian includes an externally imposed magnetic field which serves to pull the cla
minima off the equator of the unit sphere. It is the experimentally observed oscillations i
tunnel splitting as a function of the external field that makes this system interesting. The o
tions are a consequence of interference between the two distinct instanton trajectories a
accurately reproduced by our calculation.

We take as our Hamiltonian

Ĥ5k1Ĵz
21k2Ĵy

22gmBHĴz , ~6.1!

with k1.k2.0. We definel5k2 /k1 , Hc52k1 j /gmB and

h5H/Hc . ~6.2!
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We will express all results in terms of the combinationsl andh. It is also convenient to define
1/j corrected fieldh̃ and anisotropyk̃1 by

h̃5 jhY S j 2
1

2D , k̃15k1S j 2
1

2D Y j . ~6.3!

We follow the same steps as in the LMG model. The ‘‘classical’’ Hamiltonian appearing in
path integral is

H~ z̄,z!5
^zuĤuz&

^zuz&
5 k̃1 j 2F ~12 z̄z!22l~z2 z̄!222h̃~12 z̄2z2!

~11 z̄z!2 G . ~6.4!

~We now use states in whichz50 corresponds to the north pole, as this is more convenient. A
a constant~k11k2) j /2 has been subtracted from the classical energy.! The energy minima are
now at the points

z̄5z56z0 , ~6.5!

wherez0 is real and given by

z05@~12h̃!/~11h̃!#1/2. ~6.6!

In Cartesian coordinates these minima lie in thexz plane—provided we confine ourselves toh̃
,1, which we shall do. In fact, we will assume that

h̃,A12l. ~6.7!

At the two minima, the energy is

e05H~ z̄0 ,z0!52 k̃1 j 2h̃2. ~6.8!

The classical equations of motion are

TABLE I. Comparison between numerical and analytic@Eq. ~5.26!# results
for the ground state tunnel splitting in the LMG model withw51. Numbers
in parentheses give the power of 10 multiplying the answer. The last column
gives the deviation of the analytic answer from the numerical one. Note,
however, that forj 519 and j 520, the splitting is getting close to the
machine precision, and the error is largely in the numerical result.

j D ~numerical! D ~analytic! Difference~%!

2 2.1878(21) 1.8511(21) 15.4
3 4.3279(22) 3.8899(22) 10.1
4 8.3587(23) 7.7064(23) 7.8
5 1.5781(23) 1.4783(23) 6.3
6 2.9339(24) 2.7784(24) 5.3
7 5.3948(25) 5.1489(25) 4.6
8 9.8372(26) 9.4441(26) 4.0
9 1.7820(26) 1.7186(26) 3.6

10 3.2111(27) 3.1082(27) 3.2
11 5.7611(28) 5.5932(28) 2.9
12 1.0298(28) 1.0023(28) 2.7
13 1.8352(29) 1.7899(29) 2.5
14 3.2618(210) 3.1869(210) 2.3
15 5.7836(211) 5.6598(211) 2.1
16 1.0233(211) 1.0029(211) 2.0
17 1.8157(212) 1.7737(212) 2.3
18 3.0813(213) 3.1314(213) 1.6
19 4.9021(214) 5.5199(214) 12.6
20 2.5766(214) 9.7166(215) 62.3
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zG5
k̃1 j

~11 z̄z!
@22z̄~12 z̄z!1l~ z̄2z!~11 z̄2!12h̃z̄~11 z̄z!#,

~6.9!

ż52
k̃1 j

~11 z̄z!
@22z~12 z̄z!1l~z2 z̄!~11z2!12h̃z~11 z̄z!#.

We wish to solve these subject to the boundary conditionszi5z(2`)5z0 , z̄f5z(`)52z0 . Note
that z̄i5zi , zf5 z̄f , so the instanton end points still lie on the real sphere, but the rest o
instanton does not. Once again the equations can be decoupled by exploiting the fact that
is conserved along the instanton trajectory. In this caseH( z̄,z)5e0 . This condition can be written
as

~12 z̄z!22l~z2 z̄!222h̃~12 z̄2z2!52h̃2~11 z̄z!2, ~6.10!

and may be solved to give

z̄5
Alz6~12h̃!

Al6~11h̃!z
. ~6.11!

Substituting this in the equation of motion forż, and simplifying, we get

ż56Al~11h̃!k̃1 j ~z0
22z2!. ~6.12!

We will see that to obtain instantons going fromz0 to 2z0 , we must pick the minus sign in thi
equation. The other sign yields instantons running in the opposite direction.

It is now elementary to integrate Eq.~6.12!, and use Eq.~6.11! to obtain the time dependenc
for both zcl(t) and z̄cl(t). We find

zcl~t!52z0 tanht, ~6.13!

z̄cl~t!52z0

Al tanht1A12h̃2

Al1A12h̃2 tanht
. ~6.14!

Here,

t5vt/2, ~6.15!

and the frequencyv is given by

v52k̃1 j @l~12h̃2!#1/2. ~6.16!

That this is the samev that follows from Eqs.~3.16! and~3.17! shall be shown shortly. It can b
seen that our solution corresponds to choosing the minus sign in Eq.~6.12! as asserted above. It i
also useful to note that the solution~6.13! and ~6.14! can be rewritten as

zcl52z0 tanht, z̄cl52z0 coth~ t1t0!, ~6.17!

where

tanht05S l

12h̃2D 1/2

. ~6.18!
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Equations~6.12! and ~6.11! possess a second solution,

zcl52z0 cotht, z̄cl52z0 tanh~ t1t0!. ~6.19!

Formally, this new trajectory can be obtained from the first by the shiftt→t1 ip/2. Alternatively,
we could obtain it by switching the expressions forzcl and z̄cl in Eqs. ~6.13! and ~6.14!, which
corresponds to reflection in thexz plane—a symmetry of the Hamiltonian—and then shiftingt by
2t0 .

Again we find the frequenciesv, v1 andv2 . We note that

v15
~11 z̄izi !

2

2 j

]2H

]z] z̄U
i

, v25
~11 z̄izi !

2

2 j

]2H

]z2 U
i

, ~6.20!

where the suffixi means that the derivatives are to be evaluated at the initial pointz̄5z5zi .
Carrying out the algebra, we obtain

v15 k̃1 j ~12h̃21l!, ~6.21!

v25 k̃1 j ~12h̃22l!. ~6.22!

We now use Eq.~3.17! to show thatv is given by Eq.~6.16!. The same frequencies are found
the final pointz̄5z5zf .

We next evaluate and integrate the Wess–Zumino and Solari–Kochetov terms in the tun
action, denoting these byI WZ andI SK as before. Since the calculations are somewhat lengthy,
best to do the two terms separately. We begin withI WZ , considering instanton 1, i.e., that given b
~6.13! and ~6.14!. After some algebra, we obtain

aWZ~t!52
p2~ tanht !

p3~ tanht !

v

2
sech2 t, ~6.23!

wherep2 andp3 are polynomials of degree 2 and 3, whose explicit form we do not require. W
we do need is the differentialaWZdt. If we make the substitution

v5tanht, ~6.24!

and factorize the polynomialsp2 andp3 , we obtain

E
2`

`

aWZ~t!dt52E
21

1 ~v2v3!~v2v4!

~v2v1!~v2v2!~v2v5!
dv, ~6.25!

where

v1,25
1

Al
S 11h̃

12h̃
D 1/2

~216A12l!, ~6.26!

v3,45
2A12h̃26A12h̃22l

Al
, ~6.27!

v552
Al

A12h̃2
. ~6.28!

The integral is best done by decomposing the integrand into partial fractions. We find
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~v2v3!~v2v4!

~v2v1!~v2v2!~v2v5!
5

1

v2v5
1

b

v2v1
2

b

v2v2
, ~6.29!

where

b52
h̃

A12l
. ~6.30!

Thus,

E
2`

`

aWZdt52F lnS 12v5

212v5
D1b lnS 12v1

212v1
D2b lnS 12v2

212v2
D G . ~6.31!

The ratio involvingv5 is

12v5

212v5
5

Al1A12h̃2

Al2A12h̃2
[R̃1 , ~6.32!

while theb terms combine to yield the logarithm of

12v1v21~v22v1!

12v1v22~v22v1!
5

h̃Al1A12lA12h̃2

h̃Al2A12lA12h̃2
[R̃2 . ~6.33!

Collecting together the various parts, we have

I WZ,152S j 1
1

2D ln R̃11S j 1
1

2D h̃

A12l
ln R̃2 . ~6.34!

We have added another suffix to show that this pertains to instanton 1.
The next step is to integrate the Solari–Kochetov term. For this we first needfSK8 . From Eqs.

~6.4! and ~2.17! we find

fSK8 5
k̃1 j

~11 z̄z!2 @22~124z̄z1~ z̄z!2!1l~~11 z̄z!213~ z̄2z!2!12h̃~12 z̄2z2!#. ~6.35!

~The reader may verify that ast→6`, fSK8 →v1 . This provides a check on our earlier calcul
tion of v1 .) After a little more work, we find

fSK8 2v15
k̃1 j

~11 z̄z!2 @23~12 z̄z!213l~ z̄2z!212h̃~12 z̄2z2!1h̃2~11 z̄z!2#. ~6.36!

This quantity is the integrand in Eq.~5.15! for I SK, and so it only needs to be evaluated along
instanton trajectories. We may simplify the calculation by using energy conservation to elim
the term inl. When this is done, we obtain

I SK52k̃1 j h̃E
2`

`

dt
2~12h̃!1~11h̃!z̄z

11 z̄z
. ~6.37!

The integrals are evaluated in the same way asI WZ . With the same change of variables, a
definitions ofv1 to v5 as before, we get
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I SK52
2h̃~12h̃2!1/2

Al~12h̃!
E

21

1 dv

~v2v1!~v2v2!
52

h̃

A12l
E

21

1 F 1

v2v1
2

1

v2v2
Gdv

52
h̃

A12l
ln R̃2 . ~6.38!

Note that this isO(1/j ) relative to the Wess–Zumino contribution. Adding together the t
contributions, we obtain the total action

I 52S j 1
1

2D ln R̃11
jh

A12l
ln R̃2 . ~6.39!

In the second term we have used the formula (j 2 1/2)h̃5 jh.
We now turn to the prefactorP. In evaluating this, we may ignore differences of order 1j ,

i.e., we may replacej̃ by j , h̃ by h, etc. The quantity consists of a product of various factors,
of which are already available. Thus,

j

pN
5

j

p~11z0
2!2 . ~6.40!

The factorsz̄1 andz2 are found by differentiating the formulas~6.13! and~6.14! and examining
the limits t→6`. In this we way we get

z2522z0 , ~6.41!

z̄152z0

A12h22Al

A12h21Al
. ~6.42!

Finally,

2v

v12v
54

Al~12h2!

~12h21l!22Al~12h2!
54

Al~12h2!

@A12h22Al#2
. ~6.43!

Making use of the identity

2z0

11z0
2 5~12h2!1/2, ~6.44!

we obtain

P52
4 j

p

l1/2~12h2!3/2

12h22l
. ~6.45!

We can now obtain the contribution of instanton 1 to the tunneling amplitude by substit
Eqs.~6.39! and ~6.45! in the general formula~4.10!. Denoting this quantity byD1 , we have

D152vAuPueI 2 ip/2, ~6.46!

where the additional factor ofe2 ip/2 arises from the fact thatP,0.
It remains to obtain the tunneling amplitudeD2 from the second instanton. Because the t

instantons are related by a complex shift int, it is apparent that the actionsI 1,2 ~where we
temporarily add suffixes to distinguish the two! and the prefactorsP1,2 will be given by the same
4 Oct 2004 to 128.200.29.167. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



eneral
unam-
urest
an be

f

en-

y. As

e
nt

form

art of

66 J. Math. Phys., Vol. 44, No. 1, January 2003 Garg et al.

Downloaded 0
analytic expressions. However, the phases to be assigned to the actions andAP are somewhat
ambiguous. Unlike the case of a particle moving in one dimension, the prefactor in the g
formula does not arise as the determinant of a Hermitian quadratic form, and there is no
biguous way for factors ofi to get partitioned between the prefactor and the exponent. The s
way of fixing the relative phases is to appeal to a physical argument. Alternatively, this c
regarded as fixing the signs of the amplitudesai andaf .

For the Fe8 Hamiltonian~6.4!, let us work in theJz basisu j ,m& with the standard definition o
the raising and lowering operatorsJ6 , so that the matrix elements^ j ,m61uJ6u j ,m& are all real.
Then the matrix ofĤ is completely real, and since it is Hermitian, all its eigenvalues and eig
vectors are also real. Second, sincezi5z0 andzf52z0 are real, the statesuzi , f& are real, i.e., all
the matrix elementŝj ,muzi , f& are real. Thus the amplitudesai andaf are real. It follows that the
amplitudeK is real, and so is the one-instanton contribution to it, i.e.,D11D2 is real. Therefore,
we must have

D25D1* . ~6.47!

Equation~6.47! determinesD2 , and the energy splittingD completely. However, it is still
useful to investigate the origin of the phase difference in the actions a little more closel
readers will have noticed already, the integrand in Eq.~6.25! is singular atv5v2 andv5v5 , since
for h̃,A12l,

v1,21, 21,v2,1, 21,v5,1. ~6.48!

Correspondingly, bothR̃1 andR̃2 are negative, and both lnR̃1 and lnR̃2 must be interpreted to hav
an imaginary part ofp modulo an integer multiple of 2p. The question is what the assignme
should be for the two instantons. We can see this most easily by examining the differenceDI WZ

5I WZ,22I WZ,1. To this end, we note that the WZ one-form may be written as a complex one-
in the z plane,

aWZdt5
1

11zz̄~z! Fz
dz̄

dz
2 z̄~z!Gdz[F~z!dz, ~6.49!

with z̄(z) given by Eq.~6.11!. Thus,I WZ may be written as az-plane contour integral ofF(z) from
z0 to 2z0 . In fact, apart from a scale factor ofz0 , the substitution~6.24! is tantamount to
changing the integration variable toz, so we see thatF(z) has poles atz0v2 andz0v5 ~the one at
z0v1 does not matter!. The two instantons go around these poles in opposite senses, soDI WZ is
given by integratingF(z) along a closed contour fromz0 to 2z0 and back toz0 :

DI WZ5~2 j 11! R F~z!dz. ~6.50!

The residues at the poles can be read off the partial fraction decomposition~6.29!, yielding

I WZ,22I WZ,15~2 j 11!pF12
h̃

A12l
G . ~6.51!

This is precisely what we would obtain from Eq.~6.47!, for that would have us assign6 ip for
ln R̃1 ~and lnR̃2) for the two instantons.

The energy splitting is given by

D5D11D2* . ~6.52!

To compare with previous results, it is useful to rewrite this as follows. Consider the real p
the action, Eq.~6.39!,
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G052ReI 5S j 1
1

2D lnuR̃1u2
jh

A12l
lnuR̃2u. ~6.53!

The ratiosR̃1 andR̃2 are defined in terms of the fieldh̃. If we write h̃5h1O(1/j ), and expand
in powers of 1/j , we discover that

G05S j 1
1

2D lnuR1u2
jh

A12l
lnuR2u1O~ j 21!, ~6.54!

whereRi is obtained fromR̃i by simply deleting the tildes above theh’s. Note that the corrections
are ofO(1/j ), not O(1). These are beyond the accuracy to which we are working, so we sim
drop them henceforth.

Thus, the complete expression for the splitting is

D5A8

p
vF1/2e2G0 cosL. ~6.55!

We give the expressions forF, G0 andL for ready reference:

F58 j
l1/2~12h2!3/2

12h22l
, ~6.56!

G05S j 1
1

2
D lnFA12h21Al

A12h22Al
G2

jh

A12l
lnFA~12l!~12h2!1hAl

A~12l!~12h2!2hAl
G , ~6.57!

L5Im I 2
p

2
5 j pS 12

h

A12l
D . ~6.58!

Our answer forD is identical to that found by means of the discrete WKB method in Ref
@see Eqs.~5.1!–~5.5!#. Naturally, the points at the which the tunnel splitting vanishes are the s
too. In Fig. 1, we compare our result with a numerical evaluation ofD. The error rises from
;1.5% ath50 to ;35% at the largest values ofh shown. However, given that our formula
only asymptotically valid asj→` for fixed h, and that it fits the overall behavior over five orde
of magnitude, this is quite acceptable. The approximation is clearly not uniform inh. The energy
barrier decreases with increasingh, and since semiclassical answers for splittings are gene
more accurate the higher the barrier, the trend in the error is not surprising either.

The nontrivial aspect of this calculation is that there are 1/j corrections in the quenching
condition. If we simply take the energy expectationH( z̄,z)5^zuĤuz&/^zuz& in the Wess–Zumino

FIG. 1. Comparison between numerical~solid line! and analytic@Eq. ~6.55!, dashed line# results for the splitting between
the two lowest levels in the Fe8 model. The parameters arek150.321 K, k250.229 K, close to the measured values.
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term, we have the problem that the anisotropy and field terms scale withj differently if 1/j
corrections are included. This is how the quenching condition was found in Ref. 9, but thj
corrections were never considered, so it was somewhat serendipitous that the condition th
stated turned out to be rigorously correct. By including the SK correction, this deficiency is
repaired.

VII. DISCUSSION

We have shown in this article how to extend to the spin coherent-state path integra
methods used to calculate tunnel splittings from the Feynman path integral. Key to this ext
is the inclusion of the extra phase of Solari and Kochetov. The examples we discuss sho
with this inclusion, the spin coherent-state path integral is accurate and effective. It must the
be possible to put the spin coherent-state path integral on the same sound mathematical fo
the conventional Feynman integral.

Our calculations also bear on the old question of the correct ‘‘tunnelling action’’ for spin
their complex periodic orbit study of the rotational spectrum of the SF6 molecule for example,
Robbinset al.13 take, without proof, the differential of the action to be

dS5S j 1
1

2D cosudf, ~7.1!

whereu andf are the usual spherical polar coordinates. Harter and Patterson12 use the quantity
@ j ( j 11)#1/2 instead of (j 1 1/2). These are both attempts to include the first quantum correct
From our perspective, these corrections are somewhat ambiguously defined, since they
equally well be absorbed into the prefactorP in the splitting. Even if we do regard Eq.~4.13! as
the tunneling action, it is clear that there is no universalj→ j 1 1/2 rule. The Solari–Kochetov
term must be included. This term makes no contribution when it is a constant~and therefore equa
to v1). This happens in two very commonly studied cases:H5J"H ~Larmor precession!, and
H5gikJiJk , i ,k5x,y,z ~a homogeneous second order polynomial inJx , Jy , andJz). Indeed, the
special LMG model studied in Sec. V is of the second type. In general, however, the S
Kochetov phase will influence the first quantum corrections in any other semiclassical form
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APPENDIX: ZERO-POINT MOTION PROPAGATOR

Here we derive Eq.~4.6!. We first apply an SU~2! rotation to

H initial~ z̄,z!5
2 j

~11zi* zi !
2 Fv1~z2zi !~ z̄2zi* !1

1

2
v2~z2zi !

21
1

2
v2* ~ z̄2zi* !2G ~A1!

in order to placezi , z̄i at the origin, and to make the coefficientv2 real. The result is

H~ z̄,z!52 j Fv1z̄z1
1

2
v2z21

1

2
v2z̄2G . ~A2!

In the semiclassical limit, 2j @1, we may ignore the curvature of the phase space and,
rescalingA2 jz→z to account for the difference in the coefficient in the kinetic terms, iden
H( z̄,z) with the coherent state classical Hamiltonian for the squeezed harmonic oscillator
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Ĥ5v1a†a1 1
2 v2~a†2

1a2!. ~A3!

The Bogoliubov transformation

b5coshua1sinhua†,
~A4!

b†5sinhua1coshua†,

reduces the Hamiltonian

Ĥsqueezed5V cosh 2u~a†a1 1
2!1 1

2 V sinh 2u~a†2
1a2! ~A5!

to

Ĥsqueezed5V~b†b1 1
2!, ~A6!

and so we identify

V5v5Av1
22v2

2,

V cosh 2u5v1 , ~A7!

V sinh 2u5v2 .

The eigenvalues ofĤ are therefore

En5v~n1 1
2!2 1

2 v1 . ~A8!

The operatorsa†a, a2 anda†2
generate the Lie algebra su~1,1!. Therefore either the flat phase

space coherent state path integral or standard su~1,1! disentangling methods35,36 can be used to
derive

^z f ue2ĤTuz i&5D2 1/2exp$D21~ z̄ fz i2
1
2 sinh 2u sinhvT~ z̄ f

21z i
2!!%e2 1/2v1T, ~A9!

where

D5evT cosh2 u2e2vT sinh2 u, ~A10!

and the harmonic oscillator coherent statesuz& are defined by

uz&5expza†u0&, au0&50. ~A11!

In the large-T limit, and with z i and z̄ f both at the origin, this reduces to

^0ue2ĤTu0&→~coshu!21e2 ~1/2!(v2v1)T5A 2v

v1v1
e2 ~1/2!(v2v1)T. ~A12!

We now rotate back to the originalzi . Taking note of the transformation properties of theuz& ’s,
we get

Ki5~11 z̄izi !
2 jA 2v

v1v1
e2 ~1/2!(v2v1)T, ~A13!

as claimed.
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