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Universal Features of Interacting Chaotic Quantum Dots.

Application to Statistics of Coulomb Blockade Peak Spacings.

Victor Belinicher(1,2), Eran Ginossar(1), and Shimon Levit(1)

(1) Weizmann Institute of Science, Rehovot 76100, Israel
(2)Weston Visiting Professor, Weizmann Institute of Science;

Institute of Semiconductor Physics, 630090, Novosibirsk, Russia

We present a complete classification of the electron-electron interaction in chaotic quantum dots
based on expansion in inverse powers of 1/M , the number of the electron states in the Thouless
window, M ≃ kF R. This classification is quite universal and extends and enlarges the universal non
interacting RMT statistical ensembles. We show that existing Coulomb blockade peak spacing data
for B = 0 and B 6= 0 is described quite accurately by the interacting GSE and by its extension to
B 6= 0. The bimodal structure existing in the interacting GUE case is completely washed out by
the combined effect of the spin orbit, pairing and higher order residual interactions.

Measurement of the fluctuations of the Coulomb block-
ade (CB) peak spacings as well as the mesoscopic spin
effects provide an excellent probe of the properties of
interaction effects in disordered quantum dots (QD). Ba-
sic experiments where performed [1,2] in ballistic, well
isolated QD of irregular shape formed in 2d GaAs het-
erostructures. The QD sizes were R ≫ 1/kF , where kF

is the electron Fermi wave vector.

The main general theme underlying this problem is an
interplay between chaos and interactions in quantum me-
chanical motion of electrons in a restricted geometry. In
a recent work [3], cf., also [4], on mesoscopic spin effects
a proposal appeared for a universal Hamiltonian which
controls the main physics of interactions in a chaotic QD
in the extreme limit kFR ≫ 1. In [5] statistical fluctu-
ations around this limit were included in the framework
of the Hartree-Fock (HF) method. Our main goal here
is to show that these fluctuations and indeed the entire
interacting Hamiltonian can be represented and classified

in a unifying universal scheme, cf. Eqs. (7,8,9) below,
which follows and extends the universal symmetry classes
of the Wigner-Dyson statistical theory for non interact-
ing electrons. Our second goal is to apply this theory to
the problem of fluctuations of the CB peak spacings. Al-
though this has received much attention recently [6–9,5],
a consistent description is still lacking. We will show that
the universal interacting GSE Hamiltonian and its exten-
sion (we call it GUSE) to the non zero magnetic field in
our scheme accounts quite well for the experimental dis-
tributions, cf. Fig. 1 below. The GSE choice matches
perfectly the recently discovered strong spin-orbit (SO)
effects in GaAs QD, [4]

The Hamiltonian of an interacting QD consists of one
and two body parts, H = H0 +Hint.

H0 =
∑

a,b,σ,σ′

Haσ,bσ′a†aσabσ′ =
∑

αν

ǫαa
†
ανaαν , (1)

Hint =
1

2

∑

Vαν1,βν2;γν3,δν4
a†αν1

a†βν2
aδν4

aγν3
, (2)

Here indices a, b denote space orbitals while σ, σ′ are the
spin indices. With a possible SO interaction Haσ,bσ′ is in
general not diagonal in the spin indices. We use α, ν to
numerate the eigen states ofHaσ,bσ′ ; ǫα are its eigen ener-
gies with α the orbital and ν = ± 1

2 - the spin or Kramers
index in the presence of SO. In irregular QD the one elec-
tron Hamiltonian in the Thouless window of states can
be described by a random matrix theory (RMT), [10–12].
We will denote byM the rank ofHaσ,bσ′ . The statistics of
Haσ,bσ′ depends on the symmetry of the problem classi-
fied by standard RMT ensembles - GOE, GUE and GSE.
The correlators of the eigen functions of Haσ,bσ′ depend
on the ensemble. For GOE they are

< ψ∗
αν(r, σ)ψβν′(r′, σ′) >=< ψαν(r, σ)ψβν′(r′, σ′) > (3)

=< ψ∗
αν(r, σ)ψ∗

βν′(r′, σ′) >= δνσδν′σ′δαβK(r, r′).

We find it convenient to work in the coordinate-spin rep-
resentation (r, σ). The function K(r, r′) is

K(r, r′) =
1

2M

M
∑

α=1

∑

νσ

ψ∗
αν(r, σ)ψαν(r′, σ) (4)

≃ A−1J0(kF |r − r′|).

Here A is the area of QD and J0(x) is the zero order
Bessel function giving an approximate quasiclassical ex-
pression for K(r, r′), [13]. For the GUE the correlators of
the type < ψψ >, and < ψ∗ψ∗ > are zero while < ψ∗ψ >
is the same as in GOE. For the GSE symmetry one has

< ψ∗
αν(r, σ)ψβν′(r′, σ′) >=

1

2
δνν′δσσ′δαβK(r, r′), (5)

< ψαν(r, σ)ψβν′(r′, σ′) >=
1

2
kνν′kσσ′δαβK(r, r′),

k̂ is 2 × 2 time inversion matrix for spin 1
2 systems [10].

It is convenient to consider the interaction part of the
Hamiltonian Hint in the basis of the eigen functions ψαν

of the one electron Hamiltonian
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Vαν1,βν2;γν3,δν4
= V ∗

γν3,δν4;αν1,βν2
=

∫

drdr′ × (6)

ψ∗
αν1

(r, σ)ψ∗
βν2

(r′, σ′)U(r, r′)ψγν3
(r, σ)ψδν4

(r′, σ′).

Here U(r, r′) is the the screened electron - electron inter-
action in QD. If SO interaction is absent the space and
spin coordinates r and σ are separated.

It is possible to represent the interaction (6) as a sum
of parts of different order in a small parameter 1/M . An
essential step in this direction was made in [3]. Here we
shall present the complete classification and investigate
some of its consequences. We will only present our main
results deferring the detailed derivations to Ref. [15]. It
will be sufficient here to assume that higher correlators
of ψ’s obey the rules of the Gaussian statistics. The role
of the non Gaussian corrections will be discussed in [15].
We use a cluster decomposition of the matrix elements (6)
as fourth order polynomial functions of the random wave
functions ψ. Inserting this into Hint we find that it con-

sists of three groups of terms Hint = H
(0)
int +H

(1)
int +H

(2)
int.

For the GOE these terms are

H
(0)
int =

1

2
VcN̂(N̂ − 1) − JŜ2 + P T̂ †T̂ , (7)

H
(1)
int = N̂

∑

αβ

un
αβ(a†α · aβ) + Ŝ ·

∑

αβ

us
αβ(a†ασaβ) +

+T̂ †
∑

αβ

up
αβaα↓aβ↑ −

∑

αβ

up∗
αβa

†
α↓a

†
β↑T̂ ,

H
(2)
int =

1

2

∑

αβγδσσ′

Ṽαβ;γδa
†
ασa

†
βσ′aδσ′aγσ.

Here we denoted by dot the scalar product in the spin
variables, N̂ =

∑

α(a†α · aα) is the operator of the to-

tal number of electrons, Ŝ = 1
2

∑

α(a†ασaα) is the op-
erator of the total spin, σ are the Pauli matrices and
T̂ =

∑

α aα↓aα↑ is the total pairing operator. The de-
composition (7) is an identity which is useful since as we
will show below and in [15] it allows to classify the groups

of terms H
(0)
int, H

(1)
int and H

(2)
int by their degree of smallness

with respect to 1/M. Namely, apart of the capacitance
term Vc ∼ M∆ (∆ is mean level spacing) and up to

logarithmic corrections the matrix elements in H
(n)
int are

∼ ∆/(M)n/2. The properties of u and Ṽ are discussed
below,cf. also Ref. [6,5].

For GUE the expression above remains valid except
that the terms containing the pairing operators T and
T † are absent. For GSE the expression (7) becomes

H
(0)
int =

1

2
VcN̂(N̂ − 1) + P T̂ †T̂ , (8)

H
(1)
int = N̂

∑

ανβν′

un
ανβν′a†ανaβν′ +

+T̂ †
∑

ανβν′

up
ανβν′aανaβν′ −

∑

ανβν′

up∗
ανβν′a

†
ανa

†
βν′ T̂ ,

H
(2)
int =

1

2

∑

αν1βν2γν3δν4

Ṽαν1βν2;γν3δν4
a†αν1

a†βν2
aδν4

aγν3
.

Now the terms containing the spin operators disappear
and the spin index is replaced by the Kramers degener-
acy index which we denote by ν. The matrices un,p and
Ṽ depend on ν.

Introduction of a perpendicular magnetic field removes
the Kramers degeneracy and changes the statistics of the
single particle Hamiltonian into GUE(2M). But this is
not the interacting GUE obtained from (7). The second
correlator in (5) vanishes and consequently the terms con-
taining the pairing operators T , T † in (8) disappear. Also
there is no need anymore for the Kramers spinor indices
in un and Ṽ . Thus one obtains a different 1/M expansion
which we term GUSE (unitary arising from simplectic)

H
(GUSE)
int =

1

2
VcN̂(N̂ − 1) + N̂

2M
∑

α,β=1

un
αβa

†
αaβ + (9)

+
1

2

2M
∑

α,β,γ,δ=1

Ṽαβ;γδa
†
αa

†
βaδaγ .

Such an ensemble was first discussed in [4].

The lowest order H
(0)
int in (7) and its universality was

fully discussed in [3]. The 1
2VcN̂(N̂ − 1) term is at the

basis of the simplest Coulomb blockade theory while JŜ2

appeared in relation to mesoscopic spin fluctuations, [4].
Here we will discuss higher order terms and will then ex-
plore their effect and interplay with the T †T term. We
note, [15], that u and Ṽ are such that < ui

αβ >=

< Ṽαβγδ >= 0 for i = n, s, p, and the average of the sec-

ond functional derivatives of Ṽ with respect to ψ or ψ∗

is equal to zero. Up to corrections of the order 1/M the
matrices ui

αβ , u
i
ανβν′ for i = n, s, p, are Gaussian random

variables with zero average. For GOE one finds, [5,15] ,

< ui∗
αβu

i′

α′β′ >= (10)

= Cii′
∆2

M

(

δαα′δββ′ + δαβ′δβα′ − 2

M
δαβδα′β′

)

.

Here Cii′ = Ci′i are 6 dimensionless constants which de-
pend on the average geometry of as well as on the details
of the electron screening in QD (cf., below). On the ba-
sis of the correlators (5) one can find similar averages for
GUE, GSE and GUSE. For GUE the correlators of the
residual interaction Ṽ in (8) are, [5,15]

< Ṽ ∗
αβ;γδṼα′β′;γ′δ′ >=

∆2 lnM

M2
×

×D{δαα′δββ′δγγ′δδδ′ + δαβ′δβα′δγδ′δδγ′ + (11)

+δαα′δββ′δγδ′δδγ′ + δαβ′δβα′δγγ′δδδ′} +O(M−2)

where D is again a dimensionless largely universal con-
stant (cf., below). One can easily write corresponding
expressions for other ensembles.
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In order to proceed it is convenient to adopt the fol-
lowing decomposition of the basic screened e-e interaction
U(r, r) in (6), cf., [6]

U(r, r′) = Vc + usur(r) + usur(r′) + V (r, r′). (12)

Here Vc is the constant capacitance part, cf., (7,8),
usur(r) is the surface part of the potential caused by the
screening charges which are on the surface and V (r, r′)
is the screened bulk e-e interaction. One can express the
constants entering in the expressions (7,8,9) in terms of
usur(r) and V (r, r′). For GOE one finds (expressions for
other ensembles are very similar), [15]

J = P = I2, In = An−2

∫

Kn(r, r′)V (r, r′)drdr′; (13)

ui
αβ =

∫

ui(r, r′)ψ∗
α(r)ψβ(r′)drdr′, i = n, s, p;

Here un(r, r′) = δ(r − r′)(usur(r) − ū) − (1/2)us(r, r′),
up(r, r′) = us(r, r′) , ū = A−1

∫

usur(r)dr and us(r, r′) =

K(r, r′)V (r, r′) − Jδ(r − r′). The matrix Ṽαβ;γδ is given
by (6) if we substitute U(r, r′) ⇒ V (r, r′) and extract
the irreducible part. We also have

Cii′ =
M

∆2

∫

K(1, 3)K(2, 4)ui(1, 2)ui′(3, 4)dΩ, (14)

D =
M2

∆2 lnM

∫

K2(1, 3)K2(2, 4)V (1, 2)V (3, 4)dΩ,

where V (1, 2) ≡ V (r1, r2), etc., and dΩ ≡ dr1dr2dr3dr4.
We now turn to the problem of the fluctuations of the

spacings between Coulomb blockade peaks. We focus on
the experiments in 2D GaAs dots, Ref. [1]. An important
observation made in [4] was that the basic non interact-
ing Hamiltonian for such dots must include a strong SO
interaction, the so called Rashba term [14], αSOp̂ · [ŝ×n],
where p̂ and ŝ are the momentum and spin operators, n

is the vector of the normal to the QD plane. The strength
of this term in a typical GaAs/GaAlAs heterostructure
is αSO ≃ 2.5 · 10−7mev cm/h̄ [14]. The corresponding
energy scale ∼ 0.3 mev is ≫ ∆. Thus it is appropriate
to use the GSE ensemble for the random single electron
Hamiltonian and the expression (8) for the interaction.
The pairing term T †T unlike other zeroth order terms
does not commute with the random single electron part
and should therefore increase the effect of fluctuations.
Experiments in [1] included also the situation with an
applied weak perpendicular magnetic field. This corre-
sponds to the GUSE Eq. (9).

For the QD parameters we use ∆ = 2h̄2/(m∗R2),

EF = πh̄2/(m∗r2sc), rsc ≃ n
−1/2
c , where m∗ is the effec-

tive mass, nc is the electron concentration in a QD. The
Thouless energy is ETh = h̄/τbal =

√
2πh̄2/(m∗rscR).

From Eq. (4) it follows that the rank of RMT is
M ≃ πRkF /2 so that M ≃ π3/2R/(2rsc). The constants
in the interacting part of the GSE Hamiltonian (8) are

completely determined by usur(r), V (r, r′) and K(r, r′),
Eq.(4). We take usur(r) = −(e2/ǫ∗κR2)(1 − r2/R2)−1/2

which is appropriate for a 2D disc of radius R in the
limit κR ≫ 1 where κ = r−1

sc . For a disk shape one gets
an estimate C = 2Rǫ∗/π, Vc = e2/C = M∆/(2

√
2π).

The screened interaction V (r, r′) must behave as e2/ǫr
for κr ≪ 1 and as e2/ǫκ2r3 for κr ≫ 1, r = |r− r′|. The
constants P, C and D in Eqs.(13,14) can be expressed [15]
in terms of the integrals In (13), for n = 0, 1, 2. They are
sensitive to the intermediate range behavior of V . We
estimated them as I0 = 1.5∆, I1 = 0.51∆, I2 = 0.37∆.

We treated the last term in (7,8,9) in the Hartree-Fock
approximation. This and the term N̂

∑

un
ανβν′a†ανaβν′

in (8) lead to a modified single particle part of H
HHF

ab = Hab +Nun
ab +

∑

cd Ṽ
A
abcdρdc,

where ρ is one particle density matrix, Ṽ A
abcd = Ṽacdb −

Ṽacbd and we omitted the spin indices. One can show,
[15], that statistical properties of the HF eigen values
and of the corresponding eigen functions are practically
the same as in the original RMT. The only noticeable
effects appear when the particle-hole energy differences
are of order ∆/M , [8,15].

We have calculated ∆2(N) = EN+1 + EN−1 − 2EN

in the GSE and GUSE cases and compared with the ex-
perimental data of S.R. Patel et al., [1]. Here EN is the
ground state energy of QD with N electrons. The results
are shown in Fig.1. Our calculations in obtaining these
distributions were kept at a very simple level. The GUSE
was the simplest case since it did not have non trivial in-
teraction terms in the leading 1/M order, Eq. (9). We
used the HF expressions for E(N) and obtained

∆GUSE
2 (N) = Vc + ǫN+1 − ǫN + un

N+1,N+1 + un
N,N (15)

−1.5 −1 −0.5 0 0.5 1 1.5
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FIG. 1. ν = (∆2− < ∆2 >)/∆ - normalized peak spacings
for B = 0 and B 6= 0. Histograms are experimental data,
solid lines - predictions of the interacting GSE (GUSE) for
B = 0 (B 6= 0)
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We used RMT GUE distribution for ǫN+1−ǫN and the
Gaussian distribution for un

N+1,N+1, u
n
N,N with the co-

variance Cnn = 0.069. This value as well as Cnp and Cpp

below were obtained using a reasonable parametrization
of the screened e-e interaction, [15].

For GSE the calculations required a proper treatment
of the pairing PT †T interaction appearing in the leading
order in (8). This problem has an exact solution [16].
However we used a simple approximation which we felt
was satisfactory. For even N we minimized this term
in the subspace of two HF solutions with adjacent filled
and empty Kramers pairs. We then formed an expec-
tation of H with the resulting wave function. For the
odd N the effect of the pairing is much simpler and the
expectation with lowest energy HF wave function was
sufficient. The resulting expressions are too cumbersome
to record, cf., [15]. We used them with the RMT GSE
statistics, P = 0.37∆, the covariance Cnn as in GUSE
and Cpp = 0.023, Cnp = 0.

−2.5−2−1.5−1−0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

 ν

P(ν) 

FIG. 2. Normalized peak spacings for the interacting GUE

As one can see in Fig. 1 there no sign of the bimodal
structure in the GSE and GUSE distributions. The rea-
son for this in GUSE is perfectly obvious, cf., Eq. (15)
- the spin degeneracy which is responsible for the bi-
modal structure in simple models of the CB is completely
washed out by the combined effect of the SO interaction
and the magnetic field. In the interacting GSE the non
commutativity of the paring term PT †T with the single
particle part causes rather strong fluctuations relative to
the RMT already in the lowest order. To appreciate this
effect it is instructive to compare the leading GSE inter-
action terms, upper line in (8) with those of GUE, the
upper line with P = 0 in (7). The commuting spin inter-

action JŜ2 does not change the basic RMT fluctuations

but simply cuts and shifts different spin parts creating
sharp structures. As seen in Fig. 2 these structures are
washed out only partially by higher order terms. We con-
clude by observing that our results, Fig.1, fit quite poorly
the tails of the spacing distributions. It is not clear to us
if this is a consequence of our approximations in calcu-
lating ∆2(N) or because of more fundamental reasons.
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