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Superconductivity of an electron system with strong correlations with filling close to one electron per cell is investigated. Some
special variables reducing the Hubbard model to a system of holes and local spins are introduced. Various magnetic states of the
model: ferromagnetic, paramagnetic and antiferromagnetic are investigated. It is shown that the tendency to pairing caused by

electronic correlations is suppressed by magnetic fluctuations.

The Hubbard model describes a system of elec-
trons on a lattice with the Hamiltonian [1,2]

H= z tnn’c:dcn'a' +U Z ﬁmﬁm + z ﬂaﬁnaa (1 )
n no

n#n’

where ¢, ¢, are the Fermi operators of electrons on
the lattice site n with spin projection o=t 4=1, |;
tan =t is the electron hopping integral from the
lattice site n tothe lattice site n’; U is the constant
of Coulomb repulsion on a lattice site; A,,=c¢;,C,, is
the operator of ¢lectron number with spin projection
g, Hy=0wo— i is the chemical potential depending
on the spin projection, where w, is the precession
frequency of the electron spin in an external mag-
netic field and u is the usual chemical potential.

We shall develop the method of strong coupling
when the last two terms of the Hamiltonian (1) are
taken into account very precisely. The first term is
considered as a perturbation [3]. For U>>t¢ only
three states |nad=|n0), |nt)>, |nl)> can be con-
served per lattice site and the state |nt1])> with two
electrons per lattice site can be removed or can be
taken into account as a perturbation by the param-
eter ¢/ U. In that case the operators ¢}, C,i» fine Can
be expressed in terms of the Hubbard operators
X% =|na){bn| [3].

The operators X% and X2° anticommute in var-
ious lattice sites, while the others just commute. The

Hamiltonian (1) for U— oo has in terms of the Hub-
bard operators X2 the form # = #+ #,,, with

%= ZiunaX:a’ inm: z tn’nXgOXg?' (2)
no n's#n

On constructing the temperature Green functions of

the initial Fermi operators c}4,, ¢,, we replace them

by the Hubbard operators X%°, X% and average them

over the primary density matrix po=exp( — %) to-

gether with the temperature S-matrix

B
Sr=Tr €Xp <~ I ‘#inl(r) dT) H

0

where f=1/T is the inverse temperature, 7 is the im-
aginary time, and 7, is the time ordering product.
One can prove Wick’s theorem for the Hubbard op-
erators X2 averaged with the primary density ma-
trix po following the ideas of Vaks, Larkin and Pikin
[4]. The basic result of Wick’s theorem is formu-
lated in terms of commutators or anticommutators
alone of the operators X% between each other and
the mean values of the powers of the diagonal op-
erators X%, X9 with primary density matrix po. The
result of Wick’s theorem can be represented in com-
pact form if we present the operators X4 in terms
of the Bose and Fermi operators and the accidental
field as it was in the simpler case of the SU(2) group
in ref. [5]. Such a general representation was pub-
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lished in ref. [6] and will be proved in a later more
detailed publication. There we shall study the case of
nearly half-filling, when the Hubbard holes are the
charge carriers and the chemical potential is essen-
tially larger than the temperature z>» 7. In that case
the Hubbard operators can be expressed in terms of
the Fermi hole operators 4,,, #;, and the operators
of spin one-half s,,

X"+ X4=N=1-h"h,
X®=1-N, X"-X"4=2s%,
XW=sf¥, XY=s7, sr=s+ih‘ton (3)

Here N is the electron number operator, st is the op-
erator of the total spin which consists of the local spin
s and the hole spin 1k *oh where o are the Pauli ma-
trices, further

X01=hf, X0¢=_h:’7
X?0=(%+So+h+'h)hl _s+h1’
XO=—(4=s+h*-h)h, +s~h,. (4)

Formulae (3) and (4) make up the non-Hermitian
representation of the graded Spl(1,2) algebra. Re-
lations (3) and (4) do not represent the exact op-
erator relations determined in a Hilbert space. They
permit one to calculate the Green function in the
framework of the temperature diagram technique. In
the case of the full Hubbard model at U# co one can
construct the representation of the graded Spl(2,2)
algebra. The total set of dynamical variables consists
of electrons in lower and upper Hubbard bands, lo-
cal spins and excitons that transmit electrons be-
tween the two bands. If we substitute the represen-
tation (3), (4) by X% in the Hamiltonian (2) we
get the following effective Hamiltonian,

'%= Z ﬂ—ah:ahna"'wo Z 52;
Jﬁnt= Z tnn’h:-’(—%"h:'hn"-sna)hn
nen’

+% z t%n'sn’sm (5)
n#n’

where summation is implied over the spin indices.
The last term in X, is a correction of the order ¢/
U to the Hamiltonian (2) that is part of the Ander-
son superexchange. This correction is essential for
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the magnetic structure of the model ground state. The
ground state structure can be determined in a self-
consistent field approximation when one can con-
fine oneself to the lowest order of perturbation the-
ory. Such an approach can be found when there are
a great number of neighbours z around each lattice
site. In that case the Fourier image of the hopping
integral 7, satisfies two simple relations when summed
over the Brillouin band,

;z,,:o, ;ti:té/z«l%. (6)

We shall also suppose that the number of holes per
lattice site p is small, p< 1.

The ferromagnetic state with spins oriented in
some definite directions has a simpler structure. This
state is realized at a sufficiently large hole concen-
tration 1>>p>1t/U and low temperature T<pE,,
where E,=ty—pu is the Fermi energy. Holes and
magnons are collective excitations in the ferromag-
netic phase [7,8]. The hole-magnon Hamiltonian
can be obtained from (5) by means of the following
non-Hermitian substitution of the local spins s on
the Bose operators a, a™*,

s=a*a+¢, s =a,
st=—a*(2¢+a*a). (7)

Here ¢ is the accidental field introduced in ref. [5].
At T—0, ¢ does not fluctuate and approaches — 4 and
the representation (7) turns into the well-known
Dyson-Mallev representation [5]. The Feynman
diagrams for the mass operators of holes 2, and mag-
nons P,

M
[
<D
N
-
.
M,
i
®

Pq=”“"‘§2““’”+ ”O““‘
+ m+w@vw (8)

determine the dispersion laws of holes ¢; and mag-
nons wy;

_ —L+ u
E=—Fs4pT)tut= for 70,
u



Volume 142, number 8,9

Wy = ; (te —tesn ) (DI —PR). 9)

Here the solid line represents a hole, the wavy line
represents a magnon, and the broken line represents
the longitudinal spin component; g=(w, k) is the
four-momentum of a hole or magnon. p# is the hole
distribution function, p= (E,z/t,)/?/6n%. The strong
splitting of the hole dispersion law according to the
spin projection is implied by (9), thus the holes with
only a spin projection are thermally excited. The
Goldstone theorem is fulfilled for the magnon dis-
persion law (9). The magnetic energy of the ground
state is determihed by the two following diagrams,

E= DO + < _ >0, Jd=¢ (10)

and in analytic form

E=Y (€gpg+530pg/d€d).

Comparing it with the energy of the paramagnetic
state one can be convinced that the ferromagnetic
state has low energy and determines the Curie point
of the ferromagnetic phase transition

Tc=EY?*/4n?z%3/? ~E,p.

These results are consistent with the Nagaoka theo-
rem [9]. Due to the strong Fermi surface splitting in
the ferromagnetic state superconductivity cannot be
realized with any reasonable attraction mechanisms.

The paramagnetic state is realized at sufficiently
high temperature

TZE,p
‘“above the ferromagnetic region” or
T2t(top—-U)/Up

‘““above the antiferromagnetic region”. The hole dis-
persion law in a paramagnetic phase is given by

e =—(+p)tutp. (11)

The spin correlator K% in the paramagnetic phase is
of a quasistatical character. It can be calculated in
the random phase approximation by summing the
chain diagram series

<si(q)s;(q')> =0%(g—q' )KY,

(K§o=——X - = =18,8(«),
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Kiz= -®--=-%-+-#-CD-%-
+ = <> % -CO-%—,
Ki=—x-/[1-- x>
=46,;6(w)/(1~11,/2T) , (12)

where the polarization operator IT, has the well-
known form

I txan (Dasw —Dx)
= r ) 1
1L ; — € —€pyx +10 (13

Expressions (12) and (13) for K¥ are the basic
approximation with respect to the parameter 1/z, and
at k=0 it has the characteristic pole at the ferro-
magnetic transition temperature. If the Anderson su-
perexchange interaction was taken into account in
(12), then at p<t/U and momentum k=n(1,1,1)/
a, where a is the lattice constant, the pole connected
with the antiferromagnetic phase transition appears
in the spin correlator K¥. The primary hole scatter-
ing amplitude can be easily obtained from the Ham-
iltonian (5),

>< ot +12,). (14)
1t 3t

This amplitude is positive for electrons (repulsion)
and negative for holes (attraction). This statement
was first made in refs. [10,11] and may be inter-
preted as an effective band narrowing when elec-
trons approach each other, which increases the elec-
tron energy and decreases the hole energy. The
kinematic hole attraction (14) makes the supercon-
ductivity discussion reasonable. This attraction sur-
passes the attraction caused by superexchange dis-
cussed earlier [2,16] for the parameter U/t.

The technique developed above permits one to get
the Gor’kov system of equations for a normal and an
anomalous Green function in terms of the hole op-
erators h,, h,,. The anomalous mass operators in-
clude three contributions in the low order of
interaction,
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Here the * signs correspond to the spin projections
of the holes. The first contribution caused by the ki-
nematic attraction of the holes and the last two are
connected with the hole scattering on spin fluctua-
tions which as shown by Abrikosov and Gor’kov
[13] destroys the superconductivity. Our situation
differs from that in ref. [13] in two respects: (a) we
have the fluctuation of a spin lattice contrary to the
case of paramagnetic impurities in ref. [13]. (b) The
hole attraction is not localized on the Fermi surface.
It can be shown that the superconductivity criterion
[13]: the superconductivity gap 4, without taking
into account spin fluctuation, would be larger than
the energy level width on the Fermi surface Al
caused by the hole scattering on the spin fluctua-
tions, is valid in our case too. From the BCS self-
consistent conditions on the gap parameter follows

4,=E, exp[ —c(to/E,)'*]1 < E,,

Ey=pu—ity, cx~1. (16)
One can get expression (16) for 4, if we decompose
Lexto(1—ak?/z)

in a neighbourhood of the maximum of the Brillouin
bond. The spin width of the energy level on the Fermi
surface can be easily obtained form the mass oper-
ator (15)

Al =3r(1E,)"?/2, A, <l (17)

and pairing is destroyed due to the hole scattering on
spin fluctuations.

The antiferromagnetic state is realized at a low hole
concentration p<t/U and low temperatures
T'st3/U. In that case we shall be confined to a qual-
itative description alone. The number of hole exci-
tations doubles due to the decrease of the Brillouin
band volume. As follows from the Hamiltonian (5)
the hole hopping on a neighborhood sublattice is
possible due to quantum fluctuations of the spin pro-
jection of a sublattice, the hole dispersion law has
the form

€f =1 6/22z2. (18)

One can see that the hole four-particle interaction is
attractive on the Fermi surface. However, the ex-
change by antiferromagnon excitations between the
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holes is stronger, leading to a repulsion on the Fermi
surface [14]. The repulsion/attraction ratio is de-
termined by the parameter U/ tm/2_2 in the frame-
work of the hole intermode ladder approximation.
Therefore the spin fluctuation destroys the super-
conductivity in that case as well.

The picture developed above does not take into
consideration the process of the hole spin bag for-
mation, i.e. the construction of a ferron or magnetic
polaron [15] when the hole polarizes the local spins
and forms ferromagnetic regions around itself. If
Coulomb hole repulsion is not considered then all
holes form one big ferromagnetic drop. When the
Coulomb repulsion is taken into account the number
of holes in the drop is finite, but the drop forms a
lattice that sticks to impurities (pinning) and the
system is dielectric. The situation when a drop con-
sists only of two holes and the two-hole drops form
the Bose condensate seems to be exotic.

Let us discuss the question whether the non-
phonon mechanism of superconductivity in a model
of strong correlated electrons is possible in the case
of weak interaction. This question seems reasonable
due to the kinematic mechanism of attraction of the
holes in a low Hubbard band and the electrons in an
upper band due to electron-hole symmetry. The ba-
sic reasons of the pairing destruction are magnetic
fluctuations that are sufficiently strong at the usual
paramagnetic and antiferromagnetic phases. It is ap-
parent that such fluctuations will be suppressed in
the phase of the quantum spin liquid [2,16,17] de-
pending on the parameters E,/t,. Whether the pair-
ing is conserved in that situation is an open problem.

I should like to acknowledge helpful and stimu-
lating discussions with A.A. Abrikosov, E.G. Batyev,
L.N. Bulaevsky, R.O. Zaitsev, Yu.M. Kagan, AL
Larkin, S.V. Maleev and M.V. Sadovsky.
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