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A three-band model for copper oxides in the region of parameters where the second hole on the
copper has energy close to the first hole on the oxygen is considered. The exact solution for one
hole on a ferromagnetic background of the ordered copper spins is obtained. A general procedure
for transformation of the primary Hamiltonian to the Hamiltonian of singlet and triplet excitations
is proposed. Reduction of the singlet-triplet Hamiltonian to the single-band Hamiltonian of the
generalized ¢-J model is performed. A comparison of the solution for the generalized ¢-J model on
a ferromagnetic background with the exact solution shows very good agreement.

1. INTRODUCTION

Some time ago the extended Hubbard model or the
Emery model was proposed for a description of holes in
the CuOz plane.! The next essential step was made by
Zhang and Rice.? They proposed that holes on the oxy-
gen move over the crystal in the form of spin-singlets
formed with the copper spins and can be described by
the single-band ¢-J model. It should be noted that con-
sistent reduction of the three-band model Hamiltonian to
the single-band model ¢-J Hamiltonian was not presented
in Ref. 2. Therefore a polemic concerning the validity of
the ¢t-J model has arisen.

In the work by Emery and Reiter,® the exact solution
of the three-band model on a ferromagnetic background
of Cu spins was obtained. They have shown that this
exact solution can be interpreted in the region of small
momenta as the motion of a spin triplet formed by the
O hole and two adjacent Cu spins. Zhang and Rice*
have shown that the exact solution on a ferromagnetic
background can be interpreted as motion of the local spin
singlet. In the work by Zhang® it has been shown that the
spectra of the ¢-J model and of the three-band model are
identical: if the eigenstate of the ¢-J model is known one
can construct the eigenstate of the three-band model with
the same energy with the help of the local spin-singlet.
However, this does not mean the physical equivalence of
the two models because the wave functions of the local
spin singlets are not orthogonal, as was stressed by Emery
and Reiter.®

The effective Hamiltonian in terms of singlet and
triplet operators was obtained by Shen and Ting.” The
contribution of the triplet state was estimated to be of
the order of 10% on an antiferromagnetic background.
This value determines the precision of the single-band
approximation. Notice that it is sufficiently difficult to
recognize the Hamiltonian of the ¢-J model in the final
formula of Ref. 7. The work by Pang, Xiang, Su, and Yu®
was devoted to the construction of the singlet and triplet
states and to a comparison of the hopping parameters on
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a ferromagnetic background with the exact solution.? A
sufficiently good agreement was obtained.

All above-named works were dealing with parameters
of the Emery model® in the region U; — €, € >> |t|, where
Uy is the Coulomb repulsion at the Cu site, € is the differ-
ence in energy between the O(2p) and Cu(3d) holes, and
t is the Cu-O hopping parameter. This condition means
that the energy of the p;,p, oxygen levels lies between
and sufficiently far from the energy of the d;2_,2 copper
levels split by the Coulomb repulsion Uy.

A more accurate estimation (see work by Lovtsov and
Yushankhai® and this work below) shows that in fact
the condition of applicability of the perturbation the-
ory is more rigid: Ug — €,€ > 4/2]t|. Different band
calculations!®!! give t ~ —1.4 eV and the perturbation
theory over |t| for computing the properties of charge
carriers works at Uy >16 eV. Known estimations!®11
give Uy <8 eV. The situation is simpler if oxygen lev-
els are close to the lower or the higher dg2_,2 copper
level. We use the hole classification of the energy levels.
The case € <« Uy was considered in the work by Lovtsov
and Yushankhai,® where local singlet and triplet states
were constructed and the hopping of these states over the
crystal was studied.

In this work we study the case U — ¢ « Uy when the
oxygen level is close to the higher copper dgz_,2 level.
Such level position was proposed as a result of band cal-
culations in the work by Flambaum and Sushkov!! and
does not contradict the photoemission data.l? Actually,
the difference in position between the lower d;z_,2 and
the py,py levels is approximately 4 eV.!? For Uy =8 eV
the p;,p, levels are in the middle between the split Cu
dz2_y2 levels, but for Uy = 6 eV, as proposed in Ref. 11,
the O pz, py levels are closer to the higher dyz_,2 level. In
this work the direct oxygen-oxygen hopping is not taken
into account.

The work can be divided into three parts. In the
first part we will get the exact solution of the three-
band model on a ferromagnetic background and discuss
its properties. This solution is an analog of the corre-
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sponding solution of Emery and Reiter.? The considera-
tion of the hole motion on a ferromagnetic background
is of certain methodical interest. This solution is exact
but it does not describe the ground state but the high-
excitation state. Such a solution is used for testing the
approximate Hamiltonian of the generalized ¢-J model
obtained in the present work from the three-band Hamil-
tonian. This allows us to make a simple estimation of the
magnitude of corrections to the t-J model that appear in
the reduction of the three-band model. An estimation
of such corrections for the hole motion on an antiferro-
magnetic background of the copper spins represents a
separate problem.

In the second part of the work we transform the three-
band Hamiltonian to the Hamiltonian describing hopping
and transition between two singlet and one triplet state.
These singlet and triplet states are formed by the spin
of the hole and the spin of the copper. For performing
the transformation the technique of representation of the
Hubbard operators in terms of the hole and the spin—%
operators was used. This Hamiltonian, also containing
three bands (two singlet and one triplet), with the help
of the Schrieffer-Wolff transformation is reduced to the
low-energy Hamiltonian for the lower singlet. It is the
Hamiltonian of the generalized ¢-J model.

In the third part of the work a detailed comparison of
the properties of the generalized {-J model on a ferromag-
netic background with the exact solution of the three-
band model on a ferromagnetic background is made.
Corrections to the t-J model Hamiltonian providing an
agreement with the exact result are estimated. An excel-
lent agreement between the approximate and exact solu-
tions is shown.

In the Appendix corrections to & single-band Hamilto-
nian of third- and fourth-order over nondiagonal hopping
terms in the case Uy = ¢ are derived.

II. EXACT SOLUTION FOR THE THREE-BAND
MODEL ON A FERROMAGNETIC
BACKGROUND

A. Three-band Hamiltonian and the exact solution

‘We want to remind the reader that the Hamiltonian of
the £-J model is usually represented in the form

Hey=t Y &,8a+J) Si-Su,
{UWhe w

e = Cla(l — Rt—a)y By = (G0, (2.1)

S = (1/2)c;fac;, o = c}acza.

Here c{a,cza are the electron creation and annihilation
operators at the lattice site |, o =1, ] or :i:% is the spin
projection, o are Pauli matrices, the symbol (I} denotes
summation over the nearest-neighbors, ¢ is the hopping
integral, and J is the superexchange energy. It will be
more convenient for us to use another form of represen-
tation of the Hamiltonian (2.1) in terms of Hubbard op-
erators:

Hy=FE > XP+t> XPOX)* +JY SiSu.
] T3) iy

(2.2)

Here X are Hubbard operators at the site I: XP* =
|al)(Ib| for the states |a},|b) = |0),|c). The connection
between the Hamiltonians (2.1), (2.2) is given by the fol-
lowing relations:

xP=d, X b,
(2.3)
Si = (1/2)0as X = (1/2)doa.

We have added in Eq. (2.2) the first term, which describes
the energy of the quenched hole.

In the case of half filling, the Hamiltonian (2.2) re-
duces to the Heisenberg Hamiltonian, and for J > 0 the
antiferromagnetic state is its ground state. However, the
ferromagnetic state is an eigenstate of this Hamiltonian
and we can easily get a simple exact eigenstate |k) for
H,; with one hole over the ferromagnetic background,

|k) =Zexp('ik-rl)X101|f): 1f) = z cIlIO) (2.4)

1
ex = Eo + 4ty, v = (1/2)[cos(kza) + cos(kya)],

where |f) is the ferromagnetic state at half filling and all
electron spins down, and ¢y is the electron energy. We
will construct the exact solution for the state with one
hole over a ferromagnetic background for the three-band
model in the region of parameters discussed above.

The Hamiltonian has the form

— 0 d 0 d . d
H=¢) nh+e) nbho+Us) nfinf
Lo m,x l

+V z n?anfnﬁ +1 E (dzfapma -I-p;rnadza),
(im)ap {(Im)a

(2.5)

where d{a(dm) creates (annihilates) the d,2_,2 hole of
spin projection o at the Cu site [ and pjnﬁ(pm,g) cre-
ates (annihilates) the pg hole of spin projection g at the
O site m,nf, = dj,dia,n%5 = P, sPmp. The sign con-
vention in the last term of Egs. (2.5) corresponds to
the change of the signs of wave functions in all the odd
cells, which corresponds to the quasimomentum redefini-
tion (kz, ky) — (kz + 7/a, ky +m/a).

In the case of one hole over unit filling of the d;a_,3
copper states at each site, one can get the reduced Hamil-
tonian. Using the representation of dfa,d;a in terms of
the Hubbard operators X20, XP*, Xp% X2~

dl, = XP° +20X7%%, dip = XP*+ 22X (26)

and omitting the contribution of the X, ,"‘0, XP= operators,
one can get

22
Hpg = epznﬁw + EdZX‘
mo i

+t Y 20(pha X% + X7 Pma),

(Im)a

@.7)
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where ¢4 = eg + Uz and ¢ = eg + 2V are the renormal-
ized energies of the d and p states, X?? = |21)(12|, X% =
[1ad)(12], X2* = |2l)(la| are the Hubbard operators for
the d,2_,2 Cu states at site I. The Hubbard operators
X7, X2, X7 can be expressed in terms of the d opera-
tors of the copper

XP =nfinfy, XP?=d,dydy, X*=d}df di-
2.8)

The Hamiltonian in the form similar to (2.5) was used in
many works where the slave boson (fermion) method was
applied to the three-band model.'3716 We will show that
eigenstates of the Hamiltonian (2.5) on a ferromagnetic
background can be represented in the form

k) =Y _exp(ik - )ik f),  1f) =[] dl0),
)

I
Yi(k) = (a(l)dfydfy + BIm)dyy,  lpl) =mdu|f),
= (l/ﬁ)(-Pli}d;L - Pﬂldh), B =(1/2) Z Pma;
me(l)
(2.9
where (I) are the nearest-neighbor sites to site I, |0) is
the vacuum state of the CuO; plane that corresponds to

the completely filled 3d*° shell of Cu and the 2p° shell of
O. The energy of this state |k) is equal to

ek) = e— R(k), R(k)=+/A7F 8070,

e (st )2 A= (eame)/2,

(k)2 =1+ (1/2)%, = (1/2)[cos(kya) + cos(kya)],
(2.10)

where a is the distance between the Cu sites. Below we

will count the energy from & The coefficients a(k), (k)
have the form

a(k) = —+/(R(k) — A)/2R(k),

(2.11)
B(k) = n(k)~*v/(R(k) + A)/2R(k)
and satisfy the normalization condition
lee(k)|? + (k) |B(k)|* = 1. (2.12)

The normalization condition (2.12) has a nontrivial form
due to the fact that the states |pl) are not orthogonal

(' [pl) = u + (1/8)8qury, (2.13)

where 8¢y = 1 if | and I’ are the nearest-neighbors and
vanish otherwise. One can explicitly prove that the state
(2.9) is an eigenstate of the Hamiltonian (2.7). Act-
ing by the Hamiltonian (2.7) on the state |k) given by
(2.9) one can get the expression (2.11) for the coefficients

a(k), B(k).
B. Interpretation of the exact solution

This exact solution can be interpreted as the Bloch
wave formed by the linear combination of two local sin-

glets. One local singlet represents two holes on Cu. The
other singlet consists of one hole on Cu and another hole
on O (or more accurately of coherent sum of the hole
states on the oxygen nearest the copper). The structure
of the CuO; plane is shown in Fig.1.

Notice that at k — 0 the solution (2.10) can be repre-
sented in the form of Emery and Reiter triplets®

k)= D brdh; + 8l — PhydhirdmsIIS)
m,j=%1

atk—0, (2.14)

where summation over m is produced over all oxygen
atoms in the CuO; plane and over j on two adjacent
to the oxygen copper atoms for j = +1. However, the
solution (2.9) cannot be represented in the form (2.14)
for all k.

The solution represents the sum of the overlapping sin-
glets. Due to this overlapping a spin density matrix po
of an oxygen hole has a nontrivial form

po = (1/2){1 + [n/(2 + n)]o=}s (2.15)

where 7y is determined by Eq. (2.10) and o, is the Pauly
matrix. An average of oxygen hole spin obtained with the
help of the density matrix po is equal to 1/6 at k — 0.
This result corresponds to the calculations of Refs. 3 and
11.

In the region of small k we have the following expres-
sion for the energy of a singlet polaron:

ex = —R+ (t?/2R)k%a® + -+, R=+/A2 41262,
(2.16)
The gain in energy in (2.16) is sufficiently high: 12 is
a large number. According to the estimations of Refs.
10-12, A ~1-2 eV, t ~ —1.4 eV, and the perturbation

theory over ¢/A does not work: A? < 4(eV)?, 12¢% ~
24(eV)?2, and 12t2 > A?, and we have at the small k

ex = —2v/3t + togk?a?,

(2.17)
tor =t/4v/3 =0.1443t ~ 0.2 eV.
The band width w is equal to
w=R — /A2 + 42 ~ 2(+/3 — 1)t = 1.469¢, (2.18)
(o] @]
X X
(o] (0]

FIG. 1. The structure of the CuO; plane. The crosses de-
note copper, circles denote oxygen. The local cluster is sepa-~
rated by solid lines. The hole on the oxygen on the solid lines
constitutes the coherent state, which forms the local singlet.



which is 1.25 times larger than the naive band width
O2ter = 2t/v/3. These conclusions agree with re-
sults of Flambaum and Sushkov obtained by variational
method.!!

C. Reformulation of the exact solution

In this section we reformulate the exact solution
in other notations that will be of further use. For
this we produce a map of three Cu states at every
site |1]),]11),]2) = |7l) into eight spin-hole states:
[0,2),]18,@),|2,) where o, = %1/2 or |,1 are the
spin-5 projections and the first index is the number of
holes. One can introduce the Fermi operators for holes
hi, he and the spin—% operators s; then

X% = /220(ht8)_o(1 — AP), §=(1-2s0)/4,

8
X2 = V22a(1 — AP)(§h)—a, AP = (hTR), d"=hihthiRy,
X2 =pl(1-aMsh, N=X"T4+xH=1-nr+d"

This representation can be used for a description of
one-hole states if we omit the multiplier (1 — %) in Eq.
(2.21) for X2*, X%2 and X?? that is essential for de-
scribing the two-hole states |2a) (2.19). Substituting
the representation (2.21) for X2*, X2 and X?? in the
Hamiltonian (2.7), we can obtain a Hamiltonian in more
usual terms

Hyi= ¢, Znﬁm +eq Zh;&h;
m,a 1

+V2tY (5P + Plahy). (2.22)
!

This Hamiltonian contains the operators of holes
P} oy Pma 8t the O sites, the operators of holes hl, ho
at the Cu sites, and the operators of spin--;- s at the Cu
sites. These operators act on the ground state where
there is a spin—% at every Cu site. The operator 3; repre-
sents a projector on the singlet state in the one-particle
sector. The eigenstate of the Hamiltonian (2.7),(2.22)
can be represented as the sum of two singlets

k) = > exp(ik - 1) Zi(K)| f),
l

Zi(k) = (k)87 + B(k)ST,
(2.23)

8¢ = (1/v2)(hl; - hfys]),

8¢ = (1/v9)(P} - Ps),
where |f) is the ground state without holes with all Cu
spins 8 having the down projection. The state (2.9) in
the form (2.23) is explicitly a one-particle state. One can

easily prove that the state (2.23) is the eigenstate of the
Hamiltonian (2.7) in the form (2.22). For this we note

that the operator Z;(k) can be represented in the form

Zi(k) = V2[a(k)h] + BK) P13y, H|f)=0.  (2.24)
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52/00) = of0a), [18,0) =h}|0a), [2a) = hihf|0c).
(2.19)

The map has the following form:

1e) = [0a),
(2.20)

where |3) is the hole-spin singlet state. This map gener-
ates the following representation for Hubbard operators
on copper (2.8) (Ref. 17) in terms of hl, h,,s:

(2.21)

Then commuting the Hamiltonian (2.22) with the oper-
ator Z;(k) (2.24) and using the identity

8i8v|f) = (1/2)3lf) for L#V,

we can obtain the expression (2.11) for the coefficients

a(k), (k).

(2.25)

III. REDUCTION TO THE GENERALIZED
t-J MODEL

A. Transformation of the Hamiltonian to the
Hubbard form

For deduction of the low-energy Hamiltonian it will be
convenient to transform the primary Hamiltonian (2.7) to
the form containing exclusively the Hubbard operators.
Such transformation is based on a solution of the local
or cluster problem for one electron or hole, when cluster
energy levels and cluster eigenfunctions are found. After
this we can express all operators contained in the pri-
mary Hamiltonian (2.7), such as X2, Xp2, X2, PIL, P,
through the Hubbard operators X#'% = |a/)(¥/| charac-
terizing cluster system, where |a’), |0’} are eigenfunctions
of the cluster problem. Since only low-energy levels of
the cluster problem are essential for description of low-
energy excitations, such transformation creates the basis
for such a description.

For realization of the program described above, let us
introduce the Wannier representation for the oxygen hole
operators P,L,P;a (Ref. 2)

b= Z ’\(l’ l,)qp, -P[‘r = Z A(l’ l,)Q;-'v
ll l/

(3.1)

ALY = Z v (1 + %) explik(r; — ry)).
k
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Since the Wannier-oxygen operators qz,q{ are indepen-
dent at different sites, the primary Hamiltonian (2.7)
can be expressed through them. After this, the local or
cluster problem can be solved. But we will use another
method of deduction of the extended Hubbard Hamilto-
nian. This method is based on the use of the representa-
tion (2.21) for Hubbard operators. Hence we substitute
the representation (3.1) for P,L, Py, into the Hamiltonian
(2.22) and get

Hpa=&) (gla) +eay hisihy
i i

+2V2t > AQL V) (W sigr + ¢l 8ik).
w

(3.2)

For solving the one-site problem we divide the operators
q{a, i into the singlet and triplet parts

a=¢+d, o =8a, do=>1iq,

(3.3)
8 =(1/4)1 - 2s10), i =(1/4)(3+2s10), & +5 =1.

Then the one-site Hamiltonian has a simple quadratic
form

Hpy = [ epaf 101 + eah} 3ihy + epqffiqy
i

+2V2t o (R} s1q1 + ¢f 1hy))]

and can be easily diagonalized

HYy =) (B_claici + B bjaib + eqfia),  (3.5)
7

(3.4)

where Ey = £r with r = \/AZ+ 8332 and A\g = Ago.
New Fermi operators c{, a, b{, b; have the form

a=bq —ah;, b =aq +bhy, (3.6)

where a = 2v/2tA\o//2r(r + A), b= V/(r+ A)/2r. The

additional part of the Hamiltonian H% can be repre-
sented in the form

int 1 2
H;lxlcli = de + dea

Hyy = —4/2abt Y M (cl&13vcy — b 33by),
114
(3.7)

Hgd = 2\/§tz /\ul[ (b2 d 2)C;§[§pbl: End ac{ngyql/
u
+bb;§z£zlqll + Hc]

Here and below we will separate \g from Aw for I #£ I
and suppose that all summations over [, are performed
for I # I'. The Hamiltonians HY, and H}, sufficiently
correctly describe the lower c-singlet ba,ndp position and
c-singlet hopping to the nearest-neighbor sites. If we
exclude the double occupancy of the c-singlet sites, we
can reduce this part of the Hamiltonian HY; and HY, to
the Hamiltonian of the ¢-J model (2.2) with the nearest-
neighbor hopping. For this we estimate the energy of

the third additional hole on the elementary Cu-O plaque.
Choosing the hole wave function in the form

|8la) = &3P, df;df, [0) + nsd], B, P}, o) (3.8)

and solving a simple variational problém, we can get for
the energy of the three-hole state

B3 =V/2+Up/8 — /(A + V/2 - U,/8) + 41273,
(3.9)

At V = Uy, = 0 the energy E3 almost coincides with the
top of the singlet band on a ferromagnetic background,
and the constants V' and U, give an additional gap.

Due to this estimation we can neglect the contribution
of the three-hole state in low-energy physics and rewrite
the Hamiltonian Hpg in terms of the Hubbard operators.
For this we introduce Hubbard operators connected with
the triplet states:

XF = (1/4)q"[(1 £ 25%)(1 £ %) + sEo¥]o (1 — A9),
X0 = (1/2\/§)qt[1 —4s%0” +2s0]0l(1 — A9),
(3.10)
X = (1/4)¢T (1 — A9)(1 £ 257)(1 £ 0%)g,
X% = (1/4)q'(1 — A1 - 4570~ + 2s80]q.
Here the operators X* for ¢ = +1/2 and p = 0,+1
transform the spin--;- state with projection o into the
triplet spin-hole state with projection pu and XoH =
(X#*)*. The operators X act inside the triplet states.
Substituting  expressions of  the operators
CI§1, 8¢y, b{§l, &by, q{ fz, f[Q[ in terms of the Hubbard op-
erators, after some calculations we get the following ex-
pression for the Hamiltonian Hyg:

Hpy =) (B_-X{*+E XP) +¢, 3 X},
[ n
Hpy = —2v2abt > Ay (X§2X3° — XPXgh),
w
(3.11)
Hyy=v2t> Al (6* — a®) Xpo X5
14
—V3a(aBu) X7 XM
+V3b(aBu) XPPXS* + H.c..

Here the Hubbard operators Xf°, X, Xp, Xpe, Xpe,
X[ are determined by Eq. (2.21) if we replace A op-
erators by ¢ and b operators, respectively. The oper-
ators X{*, X/'*, X{™* are determined in Eq. (3.10).
(efp) = (1/2a]1/283,1u) are Clebsh-Gordon coefficients
for angular momentum summation.

B. Low-energy reduction of the extended
Hubbard Hamiltonian

The Hamiltonian (3.11) is equivalent to the primary
Hamiltonian (2.7), but in this form it is substantially
more convenient for description of low-energy excitations.
If we retain in Eq. (3.11) only the first two terms con-
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taining operators X7, X{*, X*° and if we add the J term
from (2.2), we get the t-J the model with hopping to all
sites. Indeed, the constants \;r are different from zero
for all sites and decrease rapidly with increasing distance
between the sites [ and I

Ao = AQQ = 0.9581, Al = /\01 = 01401,
A2 = A1 = —0.02351, Az = Mgz = —0.01373,
A1 = A2 = 0.006851, As = Agz = 0.003520,

/\n,m —y (_1)m+n+1/27r(n2 4+ m2 + nm)3/2

for n+m>1, (3.12)

where A\nm = Aoy for I = ne; + me,. Since the con-
stants Ann, decrease sufficiently rapidly with increasing
m + n, we can construct the perturbation theory over
the Hamiltonian H with the help of the Schrieffer-Wolff
transformation

st=-g.
(3.13)

Hyy = ﬁpd = exp (—S)Hpq exp (9),

In the first order of perturbation theory over H2 »d the gen-
erator of transformation and the second-order correction
to the Hamiltonian are

[HY,S) = —H2;, 6Hpa = (1/2)[H%,S].  (3.14)
For the Hamiltonian Hpq in the form (3.11) the generator
S can be easily found using the properties of the Hubbard

algebra

pd -—E()ZX[ +t12X

)

oy EoNZA,,,N X+ Y Mpdnp[tin N X7
(tn

2
S = \/_t‘ZAul(-——- fa ;
" E E_
\/_a

P

(aﬁ )XfﬁX H.c.) .
(3.15)

We retain here the contribution to the generator S essen-
tial for the correction to the lower c-singlet Hamiltonian.
On the basis of this formula for the generator S, using an
explicit form of the parameters E+, a,b and the summa-
tion formulas for the Clebsh-Gordon coefficients, one can
get the expressmn for the correction § Hpg to the Hamil-
tonians HJ; and H

8Hpa = (/1) sznxnu[ (1= A2/ Xp2 XA Xpe
Inl’
—2N, XF2 X5,

N, =x+Xxi. (3.16)
The presence of the operators X2? in Eq. (3.16) reflects
the Fermi statistics of holes. Hopping from site { to site
I’ through site n depends on the filling and the spin state
of a hole at site n.

At this final step we can add the Hamiltonian §Hy4 to
the Hamiltonians HJ;, H}, and obtain the Hamiltonian
correctly describing the energy of the lower c singlet and
its hopping to the nearest neighbors. Using the identity

Xgﬁ = (1\7,./2)5a,s + 8n0gas (317)
where s,, is the Cu spin—% operator, one can get
5 tissn XP0ap X,  (3.18)

where Eg = —1, 11 = 4)\0/\1t2/1‘, Eon =—-(3+ AQ/TZ)(tZ/T), tin = (t2/27‘)(3 + A2/T2), tig = —-(t2/1’)(1 - A2/T2).
Using the representation (2.3) of the Hubbard operators in terms of the primary electron operators c{a,cla, we can
rewrite the expression for the Hamiltonian (3.18) in a more usual form

HJj = Eo Z(l —af +df) +t1 > _(&]&) + Bon E’\ln 7S, —2d3)(1 — Af + df)

()

+ Z AirAnr [t1n (RS — 2d8) (&) +t15(a;f,aa,,)(a;faa,,)],

{i)n

The first two terms of these Hamiltonians (3.18) and
(3.19) coincide with the first two terms of the ¢-J Hamil-
tonian (2.2). The second two terms represent the second-
order corrections which depend on the filling and the spin
state of the neighbor sites. The relative magnitude of
these additional terms is approximately 10% of the first
two terms. In this case summation over index n can be
limited by the nearest neighbors, next-nearest neighbors,
and next-to-next-nearest neighbors of sites [ and I'. A
more detailed comparison of the relative contribution of
different terms in the Hamiltonian (3.18) for the case of a

df = c}cTcIcl. (3.19)

|

ferromagnetic background is presented below. If we add
to the Hamiltonian (3.18) the J term with the nearest-
neighbor exchange,

= 4t*(Ug — 20)72[1/Ug + 1/(Ug — 2A)] ~ 0.13 eV

(see Refs. 1 and 2), we get the effective one-band Hamil-
tonian for our case.

C. The structure of hopping to the next neighbors

Some works!® 22 on the t-J model consider a differ-
ent generalization of the usual ¢-J Hamiltonian. The
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reason for such consideration is a dependence of the one-
particle energy for the antiferromagnetic spin ordering
on the details of the Hamiltonian. In some works the
exchange Hamiltonian for the next neighbors (frustra-
tion) was considered.!® Such terms were deduced from
the three-band Hamiltonian in Ref. 23. The last two

HE =Y (63 XPoXe 4 Y Mindnv (b Na XPoXE™ + tissn X 0ap Xi7) |

i=2,3 sy (Wiyn

where ¢; = 4t2)\,;/\0/7', tin = (t2/7‘)(3 + Az/rz), tis =
—2(¢3/r)(1 — A%/r?) for i = 2,3 and (II'é) denotes sum-
mation over the second or third neighbors. The last term
formally coincides with the last term of the Hamiltonian
Hy; but summation over | and I’ is performed over the
second and third neighbors. The summation over n is
performed over the sites nearest ! and I’ . The physi-
cal interpretation of the Hamiltonian is similar to that of
Hp;. Corrections of the third and the fourth order to the
Hamiltonian Ho; + Hag are considered in the Appendix.

IV. COMPARISON WITH THE EXACT
SOLUTION ON A FERROMAGNETIC
BACKGROUND

A. Comparison of the second-order Hamiltonian

For the one-hole problem on a ferromagnetic back-
ground, the Hamiltonian (3.18) is substantially simplified
and can be represented in the form

Hou=E} Y Xpe+t] > XX, (4.1)
1 ()
where the parameters Ef, ¢/ have the form
Ef = —r — (4£2/r)(3 + A%/r?) (A} + M} + M3),
(4.2)

t] = (22182/7)[2)0 + (1 + A2/r?)(2)2 + A3)].

We want to discuss two questions: (1) the relative magni-
tude of the second-order corrections and (2) a comparison
with the exact result. We can compare these parameters
Ef ,t{ of the approximate Hamiltonian (3.18) with the
exact parameters E§*,t5 of the exact solution on the
ferromagnetic background

tfx = — Z €k COS (k J ri)7 ng = —'t(e)x; (4-3)
k

where the energy of a hole on a ferromagnetic background
ex is represented by a very simple equation (2.10), and
r; is the vector from the origin to the ¢ neighbor. At the
first step let us compare Eq. (2.10) and Eq. (4.1) in two
limiting cases A > t and A < t. In the first case A > ¢
we have the exact parameters Eg¥,15*

B =—A—4t?/A, t*=1t2)2A (4.4)

and for the approximate parameters B, t]

terms in the Hamiltonian (3.18) represent the corrections
to the energy-level position and to the hopping to the
nearest neighbors. But the three-band Hamiltonian also
generates hopping to the next-nearest neighbors. The
structure of these additional terms in the total Hamilto-
nian is the following:

(3.20)

r
Ef =—A — (42 /A)N3 + 4003 + A} + 23))
~ —A — 3.998t2/A,
/ (4.5)
tf = (40t?2/2A) (Ao + 222 + A3) = 0.5031¢%/A.
We can see the agreement up to the third digit. The
relative magnitudes of the corrections to Eg and t{ are

0.089 and 0.061, respectively. In the opposite case t > A
we can compute the integrals (4.3) for E§¥,15%,

E™ = —28053t, t*=0.1801¢, (4.6)
and have for the approximate case
Ef = —2v2)0t(1 + 3002 + 22 + A2)/\2)
= —2.8001¢,
tf = 2v2M (1 + (2X2 + As)/Xo) (4.7)
=0.19118¢.

The agreement between E§* and Eg is also up to the
third digit, but agreement between £§* and t{ is of about
5%. The relative magnitudes of the corrections in this
case to Eﬁf and t{ are 0.066 and 0.031, respectively. In
Table I we give the values of the parameters Eg*, Eg , 155,
and # for different values of the A2/¢? ratio.

B. More detailed comparison
of the fourth-order Hamiltonian

We will make a more detailed comparison of the pa-
rameters of the effective Hamiltonian on a ferromagnetic
background with the exact solution in the practically im-
portant limit A <« t. The corrections of the third order
to the one-band Hamiltonian, obtained in the Appendix,
lead to the following corrections to the parameters EJ, t]
of the Hamiltonian (4.1):

TABLE I. Parameters of the effective {-J model on a fer-
romagnetic background for the exact solution E§*,1* and for
the reduced Hamiltonian (4.1) Ef,t{ as a function of A%/¢2.

A? /2 0.01 0.1 1.0 10.0 100.0
|Eg®|  2.8077  2.8233 29808  4.2360  10.3919
|EL| 2.8758 28917  3.0460 4.2835  10.4117

5= 0.1800 0.1789  0.1691  0.1182  0.04807
tf 0.1865  0.1854  0.1751  0.1211  0.04858




6EL = (Aat/V2A2)(3M\2 + 2X903) — 54tA%/16v2)3
~ —0.0021t,
6t = —(0qt/4v202)(17)2 + 2002 + 18)2)
~ —0.00939¢.

(4.8)

Summing up these expressions for §E§ and 6t with Ef
and ¢ from Eq. (4.7), we get

Bf =—2.8023t, tf=0.1824t. (4.9)

Comparing with the exact values E§¥, t§* of Eq. (4.6) we
see an excellent quantitative agreement.

We also will compare the hopping Hamiltonian for the
second and the third neighbors on a ferromagnetic back-
ground,

Hog = E tif Z Xlchﬁl

i=2,3 ()

(4.10)

with the exact solution (2.9). The exact hopping param-
eters t3*, 15 on a ferromagnetic background are equal to

1% = —0.01177¢, 5% = —0.006 03¢. (4.11)

‘We represent the expression for the approximate values
of the parameters ¢, t;{ in the form

tf =t +t® + 63 44, (4.12)

where t?) for j=1,2,3,4 correspond to the contribution
of the jth order of the perturbation theory. The explicit

expressions for the parameters tgj ) /t, as shown in the
Appendix, are the following:

#1 /t =+/2)g = —0.0332,
£ /= (1/V220) (A2 + 2A223 + 21 M)

=0.0164,
(4.13)
83 /t = — (1/4V223) (2603 )2 + 87A3)s + 242203 + 1703)
=0.0028,
#$9 /¢ = 13A%/4v/2A3 = 0.0010.
and in a more compact form for t:(,j ) [t
£t /t = (—0.0194,0.0095,0.0021,0.0006).  (4.14)
As a result we have
tf = —0.013¢, ¢ = —0.0072¢. (4.15)

In this case we can see that the agreement between the
exact and approximate values is of the order of 10%. We
have a substantial compensation of the direct hopping
constants tgl),t;(,l) up to the final values t,¢] on a ferro-
magnetic background due to the higher-order correction.
This means that the corrections to hopping on the next
neighbors have a very complicated nature and include
hopping processes depending on the Cu spin states at

the neighbor sites.
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V. CONCLUSION

It has been shown that in the case of the three-band
model for € 3> U; — € the Bloch waves constructed from
the local Cu-O singlets are the ground states for one-
hole excitations. The Zhang-Rice Cu-O singlets form the
basis for reduction of the three-band model to the single-
band generalized ¢-J model. The method of the reduction
developed in this work is rather specific and is based on
the representations of the Hubbard operators in terms of
the Fermi and spin—% operators. This reflects the history
of work on the paper.

In fact, the method of obtaining a single-band Hamil-
tonian is sufficiently general: at the first step the cluster
problem is solved and local electron (hole) energy lev-
els and wave functions are found with correlations be-
ing taken into account. At the second step the initial
Hamiltonian can be expressed in terms of the Hubbard
operators that transfer these states in each other, includ-
ing the ground state. This Hamiltonian includes hopping
terms that describe a hole transition from one lattice site
to another, including mixing of the local energy posi-
tions. If such mixing is small, at the third step with the
help of the Schrieffer-Wolff transformation one can get
the single-band Hamiltonian for description of the low-
energy excitations.

In the framework of such an approach one can con-
sider the general case of the three-band model parame-
ters when €, Uy — € and 4v/2t are of the same order of
magnitude. One can also take the direct oxygen-oxygen
hopping into consideration.

We want to stress that the singlet structure of hole ex-
citations based on the Wannier functions provides a very
low energy of hole excitations. In the case considered
by Lovtzov and Yushankhai? and in the case discussed
in this work, the situation is similar: the position of the
bottom of the hole singlet band, measured from the mid-
dle of the spacing between the oxygen and copper local
levels, is equal to (3.18)

By = —r — £t ~ —2v/2(1 4 0.067¢)t
~ —3.1¢, (5.1)
where ¢ is the parameter of the order of a unity which
describes the dependence of the band-bottom position on
the type of magnetic ordering of the copper spins. For
the antiferromagnetic ordering ¢ = 3.13 — 2.83(J/t)*™
(Ref. 24) and for our case, J=0.13 eV, t; = 0.27 eV
— & = 1.47, and Ep = —3.1¢. It is necessary to stress
that this value of the bottom of the band position is very
low. Attempts to develop the physics of the three-band
model in terms of the slave-boson approach!®71¢ give
Ep = —2+/2rt with o < 0.6, which yields B, = —1.7¢
for the bottom of band for some variants of the spin-
liquid state. This state is positioned sufficiently high. It
is unlikely that the gain in the exchange energy of the
spin-liquid state due to the presence of holes makes the
energy of such a type of state lower than the energy of
the singlet band.
Actually the gain in the exchange energy has a scale J,
while the band position has a scale ¢, but ¢/J =~ 10. Of
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course we cannot prove a theorem that the hole singlet
band has the lowest possible energy for the three-band
model in the actual region of parameters. However, in our
case such a theorem has been proved for a ferromagnetic
background, and we believe that the consideration of the
general magnetic state does not change the situation.

In our case (Ug — € < €) the fundamental parameter
of the t-J model J/t; ~ J/0.19¢t ~ 0.45. This estima-
tion of the ratio J/t; correlates fairly well with another
estimation of this ratio.11:25,26

Hopping to the next neighbors has a complicated na-
ture, depending on spin states of the neighbor copper ions
and cannot be expressed by a simple ¢/ term with hopping
to the next-nearest neighbors. The order of magnitude
of these terms in the Hamiltonian is (0.02-0.03)¢, which
is 10% of tl.
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APPENDIX

‘We derive here the third- and fourth-order corrections
to the effective Hamiltonian (3.11), and the forms of the
corresponding energy additions. We restrict ourselves to
the case A = 0 and a ferromagnetic background. The full
Hamiltonian in terms of the Hubbard operators (3.11)
can be expressed in more convenient terms. Let us intro-
duce

D= Np(XfoXF® — XP*X5Y),
w

F =Y du(eBu)(XPPXi* - XPoX["), (A1)
ww
G=> (eBu)(XP XL - XPPX*).
ww
One can check that
[HO) D] = 07 [H(): F] = —ﬂtF, [H09Gq = ﬂtG, (Az)

where n = 2v/2Xg. Hence, G can be called “raising”
and F “lowering” operators, because G transfers the low-
singlet state to the triplet one, the triplet to the high-
singlet, while F' acts in the opposite way.

In these (Al) terms the Hamiltonian (3.11) has the
form

Hy=—V2tD, H;=—V3t(F+Q). (A3)

The first-order generator of the Schrieffer-Wolff transfor-
mation and the second-order term of the effective Hamil-
tonian are given by

81 = —(V3/n)(F - @),
§HW = —(3t/n)(FG — GF).

(A4)

By projectin§ out highly excited states, the second-order
term in § H® can be obtained. Equations for the second-
and third-order generators of the Schrieffer-Wolff trans-
formation and for the third- and fourth-order corrections
to the interaction are?”

[Ho, 53] = —[H1,51],
[Ho, Ss] = —[Hx, 82] — (1/3)[[Ha, 51), 51,

(A5)
6H® = (1/2)[Ha, Sa,

SH® = (1/2)[Hs, Ss] — (1/24)[[[Ha, S1], $1], 81].
In terms of D, F, and G we get
8z = —(V8/n*)[D(F + G) - (F + G)D],

(A6)
S5 = —(2v3/n%)[ (G — F)D? —2D(G - F)D
+D*(G - F) —2GFG +2FGF
—~GFF + FGG + GGF — FFG],
so that 7
§H® = (3t/v2n?)| D(F +G)? + (F + G)’D
—2(F+G)D(F +G)]. (A7)

Since we are interested in the low-energy states, all terms
with F to the right and G to the left can be omitted. Also
the third term in (A7) can be removed because the triplet
state does not hop. Thus we get the effective

§H® = (3t/v2n?)[DFG + FGD). (A8)

Corresponding corrections to the effective hopping and
the energy on a ferromagnetic background have the form

63 = (vVat/n?) ( > i A My

L
+2h; Y (ME+AE) + 3,\,3,.)
1

(A9)

6E(()3)f = (\/it/nz) Ez\iz Aul /\p,;.
L
By substitution of (A6) in (A5) and keeping low-energy
terms, we have
§H® = (3t/2n°)| 6FGFG — 3F2G?
—-FGD? — D*FQG). (A10)

The fourth-order corrections to the hopping parameter
and energy will be
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5t = _(t/2n3) ( 3 Z Ait Min Anm Amj + 5 ZA,‘[ A2, + 22, +3 Z)\u Ny A +5 Z('\?z Nj +a M)
1

lLinm In

In

+3Ai5 Z(z\a Atn Ani + Ajt Min Ajn) + 13)\?,- Z&'z /\lj) )
l

iLn

§E‘§4)f = —(3t/2173) ( Z Ait Min Anm Ami + Z(’\?l /\12" +

Inm In

(A11)

\ ) + ZA:;).
l

For hopping to the first, second, and third neighbors corrections may be easily calculated.
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