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The three-band model with the O-O direct hopping near to unit filling is considered. We present the general procedure of 
reduction of this model to the low-energy limit. At unit filling the three-band model in the charge-transfer limit is reduced to the 
Heisenberg model and we calculate the superexchange constant. For the case of small electron doping the three-band model is 
reduced to the t-J model and we calculate electron hopping parameters at the nearest and next neighbors. We derive the structure 
of corrections to the t-J model and calculate their magnitudes. The values of the hopping parameters for electron- and hole-doping 
differ by approximately 40%. 

1. Introduction 

Since the discovery o f  e lec t ron-doped supercon- 
ductors  [1] there has been growing interest  in the 
structure and proper t ies  o f  these systems [2 -4  ]. The 
electron- and hole-doped high- temperature  super- 
conductors  (such as Nd2_xCexCuO4 and 
La2_xSrxCuO4) both have CuO2 planes with the same 
structure constant .  In spite o f  the s imilar  structure, 
the exper iments  show strong asymmet ry  in the prop-  
erties of  these compounds .  Thus, the cri t ical  tem- 
perature  for NdE_xCexCuO4 is only 22 K, in contrast  
with T¢ = 40 K for LaE_~SrxCuO4 [ 5 ]. Also, the dop-  
ing concentra t ions  which destroy the A F  order  for 
electron- and hole-doped systems are ~ 15% and 2 -  
3%, respectively [2,3 ]. To s tudy such asymmetr ica l  
phenomena  might  help to i l luminate  the nature  o f  
superconduct iv i ty  in these compounds .  

Since the structure of  the CuO2 plane is the same 
for these compounds ,  one can expect that  the well- 
known three-band hami l ton ian  [ 6 ] should be suit- 
able for both  of  them. 

In this paper  we investigate one electron over  unit  
filling in a CuO2 plane. We start  f rom the Emery 
hami l ton ian  [6 ] with the O - O  direct  hopping.  On 
the basis of  our  general approach  to the low-energy 
reduct ion [7 ], we obta in  the effective single-band 
hamil tonian .  The equivalence o f  this s ingle-band 

hami l ton ian  and the t - J  model  is discussed and the 
second-order  correct ions to the t - t ' - J  model  are de- 
rived. The effective parameters  of  the t - t ' - J  model  

for the electron are calculated in the realistic region 
of  Emery model  parameters.  Effective hopping is less 
than in the case o f  hole-doping. A similar  conclusion 
was ob ta ined  in the work by Zhang and Benneman 
[ 8],  but  they used the per turba t ion  theory over  the 

parameters  t~ /Ud,  t ~ / ( e p - -  ed) which does not work, 
as was argued in our previous works [7,9].  

In section 2 we represent the three-band model  in 
more  suitable terms for reduct ion to the single-band 
model.  We use a three-step procedure.  At the first 

step we int roduce the symmetr ica l  and ant isym- 
metr ical  oxygen operators .  At the second step we 

separate out the one-site hami l ton ian  and get its so- 
lution. At  the th i rd  step we represent  the pr imary  
hamil tonian in terms of  the Hubbard  operators which 

reflect the structure of  the solution o f  the one-site 
problem.  In section 3 we briefly consider  the three- 
band  model  at unit filling. Then, we apply the 

Schieffer-Wolff  t ransformat ion  [ 10 ] for getting the 
J - te rm of  the low-energy hamil tonian.  In section 4 

we get the effective electron hopping parameters  and  
the correct ion to them. Also, we discuss the accuracy 
o f  the t - t ' - J  models  for the e lec t ron-doped system. 
Section 5 presents our  conclusions. In the Appendix  
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some details of  our considerations are given. 

2. Three-band hamiltonian 

The three-band model with the direct O - O  hop- 
ping is given by the following hamiltonian [6 ]: 

H=Ed Z d~dt,~+~p Z P+,~Pm,~ 
l, ot m,o~ 

+ U d Y ,  + + dlt dtt dl, dt, + H' , ( 1 ) 
I 

where d~  (dkO creates (annihilates) the hole in a 
Cu dx2_y2 state at site l, + P,,p (Prop) creates (anni- 
hilates) the hole in an O Px(y) state at site m, % and 
% are the energies of  Cu and O levels, respectively, 
Ua is an intrasite Coulomb repulsion at the copper 
site. 

The hybridization term H'  is given by 

H ' = t  Z (d~pm,~+h.c)  
(Ira)or 

- t o  ~ (p+,~pm,~ + h . c . ) ,  (2) 
(ram')o~ 

where ( l m )  denotes the nearest-neighbor Cu and O 
sites, ( r a m ' )  denotes the nearest-neighbor O sites. 
In eq. (2) we follow the sign convention of refs. 
[11,12]. 

As was first noted by Zhang and Rice [ 13 ], it is 
conveniently to use the orthonormalized oxygen 
states on the four oxygens around a Cu site. In our 
previous work [7] we have represented the hamil- 
tonian ( I ) ,  (2) in terms oforthogonal symmetrical 
and antisymmetrical oxygen cluster states, 

ql  = ~ ( 1 + ~ k ) - l / 2 ( C o S ( k x / 2 ) p t ,  x 
k 

+ cos (ky/2 )Pky) exp ( - ikrl) , 

~t= ~ (1 + y , ) - ' / 2 ( - c o s ( k J 2 ) p ~  
k 

+ cos (kJ2)Pky)  exp ( - ikrt) , ( 3 ) 

where summation in eq. (3) is produced over the 
Brillouin zone with ~,k= 1 (cos (kxa) + cos(kya) ) and 
p~,y are the Fourier images ofp,~,y, 

Pt, x,y = ~ P,~ exp ( - ikrm) . (4) 
rnEx,y 

The physical reason for the introduction of q~ and ~7~ 

states [ 13 ] is as follows. The hole at the copper can 
hop only at the symmetrical combinations of  the ox- 
ygen states. If  we separate out the oxygen states which 
interact strongly with the copper states, we can solve 
the problem of determination of the low-energy two- 
hole states or vacuum states at the background of the 
one-hole states (spins). The states qt, qt (3) are in- 
dependent at different sites and are orthonormal- 
ized. They are very convenient for solving this 
problem. 

The original hamiltonian ( 1 ), (2) in terms of qt, 
qt takes the form 

H o = %  Z d~dla+~p ~, (q~aqt,~+q~qta) 
t,a l,a 

+ + Ud Z d~, dr) d,, dr,, 
1 

H ' = 2 t  ~" 2tr(dKql,~+h.c.)  (5) 
( / / ' > a  

--to Z { I x a , ( q ~ q r ~ - q ~ , ~ )  
( l l ' ) a  

+ vu, (qL¢z'~ +h .c . )} ,  

where the explicit form of the coefficients 2a,, l~a,, vu, 
can be obtained from eqs. ( 1 ), (2) and (3), 

{2,~, v}, , -{2,  U, v } ( t - r )  

= • { 2 , U , u } k e x p ( - i k ( l - l ' ) ) ,  (6) 
k 

with 

2 k = ( l + y k )  l/z, 

/Xk=8 COS2 (kx/2) cosZ(ky/2) ( 1 +yk) -wz , 

=4  cos(k J 2 )  c o s ( k J 2 )  (cosZ(kx/2) 

- cos2 (ky/2) ) (1  +~k) -1/2 

These coefficients decrease rapidly with increasing 
I I - l '  I . The values of 2, # and v for small I I - l ' l  are 
given in table 1. One can easily get that Voo-= 0 and, 
therefore, the mixing of q and ~ at the same sites is 
absent. The transformed hamiltonian (5) is equiv- 
alent to the three-band hamiltonian ( 1 ), (2). 

We divide the hamiltonian ( 5 ) into local and hop- 
ping parts: 

Hio¢=% Z d~dl .  + (¢p-ltotp) ~ q~qt~ 
l ,a l ,a 
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T a b l e  1 

T h e  v a l u e s  o f  t h e  c o e f f i c i e n t s  2 (1 - l '  ) , / t  ( I  - 1' ) ,  v ( !  - l '  ) a s  f u n c -  
t i o n s  o f  ( l -  i '  ) = n x  + m y  

Pl, m .~n .m=~m,n  # n . m :  ]Ara,n l ln .m= --  Pm.n 

0,0 0.9581 1.4567 0.0 
1,0 0.1401 0.5497 0.2678 
1,1 -0.0235 0.2483 0.0 
2,0 -0.0137 -0.1245 0.0812 
2,1 0.0069 -0.0322 0.0609 
2,2 0.0035 0.0231 0.0 

+ ( % +/to tp ) ~ q- t, + ql," + Ua Z dtr+ dr) d/~+ d/l 
/,a / 

(dk~ql,~ +b.c.  ) , +2t2o ~ + 
II'ot 

2tr (dt~qr~ +h.c.  ) Hhov = 2t ~ + 
/POt 

--lp Z {flU' (qLqr,~-{tLFlr~) 
II'ot 

+ vu,(q~Or~ +h .c )}  • (7) 

Hereafter, a sum over l, l' denotes l ¢  l '. One can see 
that the hybridization term in H~o¢ (7) includes only 
the symmetric oxygen state in agreement with Zhang 
and Rice [ 13 ]. The direct O - O  hopping, once taken 
into account, does not mix local states with the op- 
posite symmetry. 

For the case of  unit filling there is one hole per unit 
cell. Therefore, one can introduce the set of  one-hole 
cluster states 

[d~)--d~+ 1 0 ) ,  Iq~) -q~+ [ 0 ) ,  

10~)--0 + IO),  (8) 

and rewrite H~o¢ in these terms: 

{ ~.d X lo~ -IV ( ~ p - / g o / p ) X ~  q 
1,0" 

+ (%+potv)X~+2t2o(Xfg+h.c . )} ,  (9) 

where 

a b - -  Xt,~ = lat~ ) (bl~[ (10)  

is the Hubbard  operator at the site l, and a = + ½ is 
the spin projection. It is convenient to introduce the 
Hubbard  operators because they form the natural 
basis for description of  one-site states. I f  we also in- 
troduce the non-diagonal Hubbard  operators we can 

simply express all operators in our hamiltonian (7) 
in their terms. Diagonalization of  H~oc (9) is per- 
formed for each site independently. After diagonal- 
ization, H~oc is given by 

H~oc= ~. {EfX~+egXfg~+(Ep+/gotp)X~}, (11) 
l, oe 

with 

I f ,~)=Uld,~)-Vlq,~) , 

[g~,)=VId,~)+Ulq,~) , 

U= ( ( R, +3) /2R ,  ),/2, (12) 

V= ( ( R l - A ) / 2 R 1 )  1/2 , 

where Rl=(Ae+4t22~) 1/2, A=(A-Potp) /2 ,  and 
ef, g= - A I T  R1, Al = ( A+ potp) /2, z~=lEp--ecl, AS dis- 
cussed in ref. [ 7 ], we assume that at unit filling the 
groundstate of  the CuO2 plane is the low Ifa) - states 
on each cluster (the hole on the copper with admix- 
ture o f  symmetrical combinat ion of  the hole on the 
nearest four oxygens) with a virtual transition at 
neighbors. Such transitions give the superexchange 
interaction in the section order of  perturbation 
theory. 

The hopping part of  the hamiltonian (7) contains 
transitions between vacuum, one- and two-hole states 
at the different sites. For a detailed consideration of  
this subject see ref. [7].  

3. Superexchange interaction 

Here we consider only the terms of  Hhop that are 
relevant to intersite interaction: 

//hop= Z F[I'~,~{X[f~X°+P+xffl'°xfff'Y} , (13) 
ll" o68,y 

where y is the set of  two-hole states, which are five 
singlets and three triplets [7 ], F~,"a are matrix ele- 
ments of  the hamiltonian for transition from {f, f ,  } 
to {y~, Or} states. 

By applying the Schrieffer-Wolff transformation 
to eq. (13) (see Appendix and refs. [7,10] ) one can 
get 

Hj= E (Ju 'StSr+ Yu'lqt~r), (14) 
//, 

St=½a,~aX7 ~, R t - Y t  T + X ? .  
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The expressions for the Ja, and Yu, constant are given 
in the Appendix. 

Thus, we have established that at unit filling the 
groundstate of the CuO/plane is the system of local 
spins which interact antiferromagnetically. Since JH, 
decreases rapidly with increasing I I - l '  I, we hold 
only the nearest-neighbor term in eq. (14) and re- 
ceive the Heisenberg hamiltonian. One can check that 

1 Y<a,> -~ - fl(tr) and so 

Hj = J  Z ( S t S r -  ~NtNr ) ,  
( I t ' )  

J-J<a'> . (15) 

The second term in the hamiltonian ( 15 ) can be es- 
sential when the system goes away from unit filling. 

4. E l e c t r o n - d o p e d  s y s t e m  

The doping of the Cu02 plane by the electron is 
equivalent to removal of a hole from one of the clus- 
ters. Hence, in the hole picture the electron is "zero" 
or vacuum state. If the hole (spin) is taken away from 
cluster, the neighboring holes (spins) can hop to the 
empty site. Thus, the mechanism of the movement 
of the electron is different from the movement of the 
added hole. The electron moves as a "hole-in-hole", 
whereas the hole moves as a local singlet. 

4.1. Hopping hamiltonian 

From the expression for Hhop (7) with the defi- 
nitions (12) and (10) one can easily get the zero- 
order electron hopping hamiltonian, 

l i t=  Z Ta' X°J~ X~ "'° , (16) 
/Pot 

with 

T~r = -4t2a,  UV-tplttr V 2 . (17) 

The electron hopping hamiltonian (16) coincides 
with the hole hopping hamiltonian derived in refs. 
[ 7,9 ]. They correspond to the t-t '- . . ,  terms of the t- 
t ' - J  hamiltonian. But the expression for the hole- 
singlet hopping is more complicated [ 7 ]: 

r~, =2t2u, (x/~ U, U -  W 1 V) 

X (N//~ V I V- -  m I U )  

- tp/2tr (x/~ V, V -  W, U)2/2,  ( 18 ) 

where U and Vwere determined in eq. (12), and U1, 
V~, W1 are the components of the eigenfunction of 
the local singlet. 

Thus, we have mapped the three-band model for 
one electron over unit filling to the t - t ' - J  model. The 
hamiltonian ( 15 ), (16) in terms of the Hubbard op- 
erators can be rewritten in a more usual form: 

Ht_j=t ~, g,+c'~,,~+J 2 ( S t S r - l h , h , ' ) ,  (19) 
( H ' ) , a  (H ' )  

C'la=Cta(1--hl,_c,) , ~+ (3la) + Clo t = 

S t = l c ? a c t ,  nI=(C?'C~) . 

Here + ct,, ct, are the electron creation and annihi- 
lation operators. 

4.2. Second-order corrections 

With the help of Schrieffer-Wolff transformation 
we shall obtain the second-order corrections to the 
t - t ' - J  hamiltonian. The corrections to the first hop- 
ping parameter will be small and the t - J  model may 
be valid. The corrections to the other hopping pa- 
rameters are not relatively small and, therefore, 
models with the hopping at neighbors farther than 
the nearest must be more complicated than the sim- 
ple t-t '- . . ,  type. 

First of all we shall obtain the correction to the en- 
ergy of the electron. Such a correction arises due to 
the virtual process of hopping of the electron at the 
neighbors with transition to the excited state and 
back. The corresponding hamiltonian is given in the 
Appendix. The resulting second-order correction is 

8 H E = -  E Ma'X°°2Vr (20) 
ll' 

with 

M i r  = 

I T ~ . f ]  2 

~g -- ~f 

Tfr,f= 2t2tr ( U 2 -  V 2) + tp/~a, UV. (21) 

The hamiltonian 8HE (20) coincides completely 
with 8HE in ref. [7], but the expression (21) for the 
Mtr is sufficiently more simple than for the hole one. 

Corrections to the direct hopping parameters can 
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be obtained by transformation of  the hamiltonian 
(13).  The result is 

~Ht = Xt,  t, ,~p,y T ~,,, { xy  X °J" X {  ~'° IY, 

+ zyX°~aX~ ~,° (a,~aS . ) }, (22) 

where y is the set o f  two-hole states, Xy= ½ for singlets 
and x y =  3 for triplets, zy= 1 for singlets and zy= - ½ 
for triplets. The expressions for T~,t, are given in the 
Appendix. As was shown, the corrections to the t - t ' -  
J hamiltonian have a complicated nature and de- 
pend on the filling (N-term) and spin state of  the 
neighbors (S-term).  The corrections for the hole sin- 
gle-band model [7] and the electron one are quite 
different. 

4.3. Quant i ta t ive  results 

We have argued [ 7 ] that our general approach to 
the low-energy reduction of  a three-band model is 
essentially more correct than the other one, because 
we construct the perturbation theory over the ratio 
of  the effective hopping parameters between the dif- 
ferent local states to the energy gap between them. 
This ratio for the case o f a  CuO2 plane is o f  the order 
of  0.1. All values o f  the effective sing-band hamil- 
tonian have been derived for arbitrary parameters of  
the three-band model, without any assumption about 
a relationship among t, d and Ua. In our calculation 
we take Ud=8.2 eV, t = l . 4  eV, tv=0.7 eV, Up= 
Vpd=0 according to the different papers [14-16] .  
Also, we have taken the experimental value of  J =  126 
meV [ 17 ] and have selfconsistently determined the 
charge-transfer gap to be A=5.07 eV. In table 2 we 
present the following effective parameters of  the one- 

band model: the hopping parameters to the first, sec- 
ond and third neighbors; the contribution of  the di- 
rect O - O  hopping; corrections to hopping and en- 
ergy; value of  the ratio t l /J .  

We obtain for the electron hopping te=-t~ ~0.39 
eV, that is 1.36 times less than the hole hopping [ 7] 
th,~ 0.53 eV. The role of  the direct O - O  hopping for 
the electron-doped system is lower than for the hole 
one. Actually, the admixture of  the O-state for one 
hole on a cluster is small, unlike for the hole singlet, 
where the added hole is mainly on the oxygen. Thus, 
the O - O  hopping contribution to the hopping at the 
nearest-neighbors for the electron ( tp~/q )e ~ 20% and 
for the hole ( t p ~ / f i ) h ~ 3 6 % .  

AS for the validity of  t - J ,  t - t ' - J  and other models 
to the electron-doped system, our conclusions are 
similar to the case of  the hole-doped system. Thus, 
if we hold only the hopping at the nearest-neighbors, 
the corrections to the t - J  model on a ferromagnetic 
background are near to 0.13% for electrons and 2.5% 
for holes, and the t - J  model is valid. If  we are in- 
terested in the next-neighbors hopping, it is neces- 
sary to include the correction (22) to the effective 
hamiltonian. This correction has a complicated 
structure and does not reduce to the simple direct 
hopping. 

5. C o n c l u s i o n  

We have studied electron doping of  the CuO2 plane 
in the framework of  the three-band model. By ap- 
plying our general procedure of  the low-energy re- 
duction to the electron-doped system, we conclude 
that the t - J  model is valid as well as to the hole-doped 

Table 2 
The first three hopping parameters, the contributions of the direct O-O hopping to them, second-order corrections to them on a ferro- 
magnetic background, second-order corrections to the energy, and the ratio t~/J 

Neighbor Direct hopping Direct O-O hopping Corrections 
&n , eel (eV) tp,efr, (eV) °re (%) number, n tn , 

1 -0.3896 -0.0765 0.125 
2 0.0180 -0.0345 122.5 
3 0.0480 0.0173 24.2 

Correction to Ratio 
the energy (eV) -0.0931 Iq/JI 3.081 
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system. We established some asymmetrical proper- 
ties. The effective hopping parameter for the elec- 
tron is 1.36 times less than the hole one. Corrections 
to the single-band electron and hole t -J  models have 
different magnitudes. Such corrections are impor- 
tant for transitions at the next-nearest neighbors. 

It is doubtful that the difference in the parameters 
of  the one-band model may lead to the drastic dif- 
ference in behavior of hole-doped and electron-doped 
systems with doping. The strong asymmetrical de- 
pendence of the critical concentration for the dis- 
appearance of antiferromagnetism is probably con- 
nected with the nature of  antiferromagnetic ordering 
in this system [ 18 ]. In the hole-doped systems an- 
tiferromagnetism has a quasi-two-dimensional char- 
acter and is associated with Cu spins. In the electron- 
doped systems the contribution of Nd or Pr spins in 
the antiferromagnetic ordering is essential and three- 
dimensional effects are more important. 
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Appendix. The second-order corrections to the 
hopping process 

For obtaining such corrections we use the Schrief- 
fer-Wolff transformation 

H ~ / l = e x p (  - S )  H exp( S) , 

S + = - S .  (A.1) 

The first-order generator of  transformation and the 
second-order correction are 

[Ho, S I = - H ' ,  5H2=½[H' ,S] ,  (A.2) 

for this model Ho-H~oc (eq. (7) ) .  For the deriva- 
tion of the J-term H'  -= Hhop (eq. ( 13 ) ). Expressions 
for the Ja' and Yu, integrals are given by 

IFh, ]2 
J t r = ~ X y  

Gy + Go - 2ef 

IF5, 12 
YII" : - -  ~y Zy GY all-cO -2Gf '  (A.3) 

where y is the set of two-hole states at a cluster, Gy 
are the eigenenergies, %= 0 is the energy of the vac- 
uum state. Values xy=2, zy= ½ for singlets and 
xy= - 2, zy= 3 for triplets. Matrix elements F~, are 
obtained in ref. [ 7 ]. One can check that the major 
contribution to J and Y originates from the matrix 
element of the transition to the lowest singlet and so 

1 Y< It' ) ~- 4 J< It' >. 
The terms of Hnop (7), which lead to the energy 

correction, are given by 

H'E= Z F~'/X~tJ'~X~'~'°+X°'g~xfff'°} • (a .4)  
ll'ot 

The corresponding generator of the transformation 
is 

S E = _  ~ F~,j  {XOJ,~X~,~,o_X~r~,~xfff,o} ' (A.5) 
11' ot Gg - -  Gf 

where If,~ > and I go > are the one-hole states (12) 
with their energies Gf and eg. Thus, the second-order 
correction to the energy has the form (20). 

Corrections to the direct hopping (22) can be ob- 
tained from the transformation of the hamiltonian 
( 13 ). Magnitudes T~'nt, are given by 

F~nF~t, 
T~',t,- ey + e o _ 2 G  f • (A.6) 

The expressions of F~'n were obtained analytically and 
computed for definite values of  parameters of  the 
three-band model in ref. [7]. 
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