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Abstract

The low-energy properties of the two-dimensional Heisenberg model with spin-1

2
on

a square lattice are investigated on the basis of the local dimer order. The lattice is

divided into square blocks consisting of the quartet of spins. The spin variables and the

Heisenberg Hamiltonian are expressed in terms of the low-energy quartet variables. On

the basis of the Dyson-Maleev representation the spin-wave theory of the quartet state

is developed. The spectrum of the lower magnon excitations consists of three degenerate

modes with the energy gap ∆ = 0.17J . The ground state energy per spin E/N = −0.6J .

This preprint repeats in the main the previous one but it contains calculations of the basic

corrections and therefore has complete character.
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I. Introduction

Unusual states of the two-dimensional Heisenberg antiferromagnet attract attention in con-
nection with the problem of the magnetic state of the cuprate superconductors [1] and very
complete references in this review. This activity was stimulated by the experiments which
demonstrated that superconductivity in cuprates is realized in the strongly correlated param-
agnetic spin state which was named the spin-liquid state.

Many different models of the spin-liquid state were proposed [1] - [8]. The spin-liquid state
as a linear combination of different dimer states was considered in the works [3, 4] and was
named the RVB-state. The dimer represents the state of the two spins-1

2
with the total spin

equal to zero. The dimer can be formed from two neighboring spins-1

2
as well as from two

separated spins-1

2
. Numerical simulation of the RVB-state was produced in the work [4] and

it was demonstrated that this state for the two-dimensional Heisenberg antiferromagnet with
the nearest neighbor exchange had very low energy. This energy is higher but very close to the
energy of the Neel state. Of course, the main problem is the transformation of the magnetic
state with doping. But for progress in this problem we must have sufficiently simple model of
the spin-liquid state because the original RVB-state permits only numerical consideration.

Such simple model of the spin-liquid state was proposed in the works [9, 10]. The plane
is split into square blocks containing four spins. The block size is 2a, where a is the lattice
constant. The complete set of eigenstates for such block or quartet consists of 16 states which
can be easily found for the exchange interaction J1 between the first and J2 between the second
neighbors. For J2 < J1 the ground state |ϕ > of such quartet is the state with the total
momentum equal to zero. This state can be presented as a sum of the two possible dimer states
for the nearest spins. Its energy is −2J1 + J2/2.

As it was proposed in [9, 10] that one can get good approximation for the spin-liquid state
if |ϕ > state is chosen as ground state in each quartet and the quantum fluctuations are taken
into account. At J2 = 0 the energy per site was in [10] E0 = −0.655J that is very close to the
numerical results [4] for E0 = −0.668J . In other paper [9] based on the quartet approach some
sort of the Schwinger boson representation for the Hubbard operators of a quartet was used.
In this work the energy was sufficiently high E0 = −0.57J . The correspondence between the
numerical simulation and the quartet model is not so obvious, because in the quartet approach
the quantum fluctuations are taken into account. But approximations of [9, 10] were sufficiently
crude. The contribution of the higher-energy quartet states to the energy of the ground state
and to the spin dynamics was omitted. In the work [10] uncontrollable approximation based
on some decoupling scheme for the Green’s functions was used. In the work [9] the Schwinger
boson method is applicable only over parameter 1/N and it is also sufficiently crude.

In this work, which is based on the main idea of [9, 10] about the quartet ground state for the
Heisenberg antiferromagnet, we use spin-wave approach to description of the triplet excitations.
All approximations of this work are controllable. In this work we restrict our consideration to
the case of the unfrustrated Heisenberg antiferromagnet with J2 = 0. We consider contributions
of the lower singlet state and all triplet states into statistics and dynamics of the quartet state
of the Heisenberg antiferromagnet. The role of the additional singlet state and the quintet state
is essentially less because direct transitions from the lower singlet state into these states are
absent. We do not consider these states and it will be evident that their contribution into the
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ground state energy is sufficiently less.

II. The effective Hamiltonian of the model

The Hamiltonian of the Heisenberg antiferromagnet has a well-known form:

H = J
∑

<l,l′>

(slsl′) (2.1)

where < ll′ > notes summation over the nearest neighbors. For construction of the quartet
magnetic state let us divide the square lattice into four-spins blocks [9, 10]

Q̂ =

(

s3 s2

s4 s1

)

(2.2)

and find all eigenstates of the quartet of spins (see Appendix A). Every quartet has 16 states:
two singlets |ϕ >, |ψ > , three triplets |tm >, |xm >, |ym > and quintet |qm >. If we restrict
our consideration to the low-energy singlet ϕ and triplet t then the spins si consisting a quartet
can be expressed in terms of the Hubbard operators acting in |ϕ >, |tm >,m = ±1, 0 subspace
at the quartet n:

Zϕϕ
n = |ϕn >< nϕ|, Ztm,tm′

n = |tmn >< nm′t|,
Zϕ,tm
n = |ϕn >< nmt|, Ztm,ϕ

n = |tmn >< nϕ|, (2.3)

The spin operator sni consisting of the quartet with the number n at the doubling square lattice
may be represented as a sum of two vectors:

sni = (−)i+1Ltn +
1

4
Sttn (2.4)

where Ltn mixes |ϕ > and |tm > states

Lzpn =
1√
6
(Zϕ,p0

n + Zp0,ϕ
n ), L+

pn =
1√
3
(Zϕ,p−1

n − Zp1,ϕ
n ), L−

pn =
1√
3
(Zp−1,ϕ

n − Zϕ,p1
n ) (2.5)

for p = t and Stt,n are operators of the spin 1 acting in t-subspace

Szpqn = Zp1,q1
n − Zp−1,q−1

n , S+

pqn =
√

2(Zp1,q0
n + Zp0,q−1

n ), S−

pqn =
√

2(Zp0,q1
n + Zp−1,q0

n ), (2.6)

for p, q = t, where A± = Ax±iAy are the spherical components of a vector A. Using expression
of (A.3) in Appendix A for the energies of |ϕ > one can get the Hamiltonian of the problem

H = −2J
∑

n

Zϕ,ϕ
n − J

∑

nm

Ztm,tm
n

−(J/3)
∑

<nn′>m

(

2Ztm,ϕ
n Zϕ,tm

n′ + (−)m(Ztm,ϕ
n Zt−m,ϕ

n′ + Zϕ,tm
n Zϕ,t−m

n′ )
)

+(J/8)
∑

<nn′>mm′

Ztm,tm′

n

(

Ztm′,tm
n′ − (−)m+m′

Zt−m,t−m′

n′

)

. (2.7)
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The Hubbard operators Za,b
n for a, b = ϕ, tm are not convenient for the further analysis of the

Hamiltonian (2.7). Therefore we map the Gilbert space consisting of |ϕ > and |tm > states
into the Gilbert space of the three-dimensional Heisenberg algebra t+m, tm. Where t+m(tm) are
creation (annihilation) Bose operators. The general state of such algebra is |n+, n−, n0 > and
mapping has simple form

|ϕ >→ |0, 0, 0 >, |t1 >→ |1, 0, 0 >,
|t− 1 >→ |0, 1, 0 >, |t0 >→ |0, 0, 1 > (2.8)

This mapping generates the Holstein-Primakoff representation [11] for our Hubbard operators

(Zϕ.ϕ
n )HP = P (1 − N̂n)P, (Zϕ,tm

n )HP = P
√

1 − N̂ntnmP,

(Ztm,ϕ
n )HP = Pt+nm

√

1 − N̂nP, (Ztm,tm′

n )HP = Pt+nmtnm′P,

N̂n =
∑

m

t+nmtnm, (2.9)

where P is a projector on the lower four states (2.8) of the Heisenberg algebra t+nm, tnm. At
the low temperatures T ≪ J or a small excitation of oscillators |nm > one can produce an
isometric transformation at each site

(Za,b)DM = V −1(Za,b)HPV (2.10)

and omit the projector P . One can choose the operator V from the condition of elimination of
roots in (2.10), and get the Dyson-Maleev representation for the Hubbard operators [12, 13]

(Zϕ,ϕ
n )DM = (1 − N̂n), (Zϕ,tm

n )DM = tnm,

(Ztm,ϕ
n )DM = t+nm(1 − N̂n), (Ztm,tm′

n )DM = t+nmtnm′ ,

N̂n =
∑

m

t+nmtnm. (2.11)

The Dyson-Maleev representation for Z-operators is not a direct operator identity but it can
be used at low temperatures and a small level of excitations. Substituting the Dyson-Maleev
representation (2.11) in the Hamiltonian (2.7) we get the following effective Hamiltonian

H = −(NJ/2) + J
∑

n

N̂n − (J/3)
∑

<nn′>m

(

2t+nm(1 − N̂n)tn′m

+(−)m
(

t+nm(1 − N̂n)t
+

n′−m(1 − N̂n′) + tnmtn′−m

) )

+(J/8)
∑

<nn′>mm′

t+nmtnm′

(

t+n′m′tn′m − (−)m+m′

t+n′−mtn′−m′

)

, (2.12)

where N is the number of spins in the plane. This Hamiltonian is nonhermitian due to properties
of the Dyson-Maleev representation (2.11) but if we use it for the computation of Green’s
functions any contradictions do not appear.
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III. The approximate solution of the effective Hamil-

tonian

If we consider only the quadratic terms in the Hamiltonian (2.12) we can easily diagonalize
them with the help of u− v transformation (these quadratic terms are Hermitian) and get the
square of the magnon energy in the momentum representation

E2

k = J2(1 − 8γk/3), γk = (cos(2kxa) + cos(2kya))/2, (3.1)

where a is the distance between spins, k is the quasimomentum. One can easily see that E2
k is

negative at γk > 3/8. This means that our system is unstable in the quadratic approximation
and the higher terms in the Hamiltonian (2.12) must be taken into consideration for solving the
problem of stability. We will treat the Hamiltonian (2.12) by the mean-field method. The same
can be done by the Green’s function method. The results are identical. We seek the solution
which is invariant over the rotation and consider the following normal and abnormal averages:

< t+kmtk′m′ >= δm,m′δ(k − k′)Nk,

< t+kmt
+

k′m′ >= (−)mδm,−m′δ(k + k′)F+

k ,

< tkmtk′m′ >= (−)mδm,−m′δ(k + k′)F−

k . (3.2)

Our approach based on the Dyson-Maleev representation (2.11) is correct if the contribution of
the higher states at every lattice sites is small. Because of that the following conditions must
be fulfilled

(N̄p, F̄
±

p ) =
∑

k

(γk)
p(Nk, F

±

k ) ≪ 1, (3.3)

where the sum over k notes the normalized integral over the Brillouin zone. In this approx-
imation we can omit the contribution of the members of the six order and get the following
mean-field Hamiltonian:

Hmf = E0

mf + J
∑

km

(

αkt
+

kmtkm + (−)m(βkt
+

kmt
+

−k−m + δktkmt−k−m)/2
)

, (3.4)

where E0
mf is the initial ground state energy in the mean-field approximation:

E0

mf = (NJ/2)
(

− 1 + (3N̄0 − 4N̄1 − 2F̄−

1 − 2F̄+

1 )/4

−(3/8)
∑

k

(2αkNk + βkF
+

k + γkF
−

k )
)

(3.5)

and the coefficients αk, βk, δk are

αk = 4(3/4 + 4(N̄1 + F̄+

1 ) + (4N̄0 + F̄+

0 − 1 + 3N̄1/4)γk)/3,

βk = 4(2(N̄1 + F̄−

1 ) + (8N̄0 − 1 − 3F̄−

1 /4)γk)/3,

δk = 4(2F̄+

0 − 1 − 3F̄+

1 /4)γk/3. (3.6)

The quadratic part of the Hamiltonian Hmf (3.4) was obtained from H (2.12) by computing
all possible paired averages in the fourth order terms of H (2.12) . The initial energy E0

mf is
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determined from the condition of coincidence of the average values of the Hamiltonian (2.12) and
(3.4). This procedure corresponds to determination of the one-particle energy by the Green’s
function method in the one-loop approximation. The Hamiltonian (3.4) can be diagonalized
with the help of the u−v−w transformation (this procedure is equivalent of solving the Dyson
equation for normal and abnormal Green’s functions):

tkm = ukbkm + (−)mvkb
+

−k−m,

t+km = ukb
+

km + (−)mwkb−k−m,

u2

k − vkwk = 1. (3.7)

After this transformation the Hamiltonian (3.4) takes the form:

Hmf = Emf +
∑

km

Ekb
+

kmbkm (3.8)

with the ground state energy

Emf = E0

mf + (3/4)N
∑

k

(Ek − Jαk) (3.9)

and

Ek = JRk, Rk =
√

α2
k − βkδk. (3.10)

The coefficients uk, vk, wk have form:

uk =
√

(αk +Rk)/2Rk, vk = zkβk,

zk = −
√

|αk − Rk|/2|βkδk|Rk, wk = zkδk. (3.11)

So far as the coefficients αk, βk, δk depend on the overages N̄p, F̄
±

p and consequently the coeffi-
cients uk, vk, wk also depend on these parameters we can get the closed system of equations if
we substitute Eqs. (3.7) for tkm, t+km into Eqs. (3.2), (3.3) which determine N̄p, F̄

±

p .

Nk = (αk/Rk)(nk + 1/2) − 1/2,

F±

k = −[(δk, βk)/Rk](nk + 1/2), (3.12)

where nk is the Planck function: nk = (exp (βEk)−1)−1 and β = 1/T is the inverse temperature.
The system of equations of (3.12) was solved numerically (see Appendix B for details) and we
get the averages N̄p, F̄

±

p as a function of the temperature. We also computed the free energy
of the quartet state from (3.8) and determined the magnon energy Ek

Ek =
√
A+ 2Bǫ+ Cǫ2, ǫ = γk

Ek ≈ ∆(1 + k2ξ2), at ka ≪ 1

∆ =
√
A+ 2B + C, ξ2 = −(B + 2C)a2/8∆2 (3.13)

All these parameters are presented in Table 1.
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T/J F/NJ ∆/J A/J2 B/J2 C/J2

0 -0.567 0.174 3.474 -1.595 -0.254
0.1 -0.567 0.205 3.484 -1.592 -0.258
0.3 -0.570 0.416 3.525 -1.562 -0.229
0.5 -0.585 0.704 3.452 -1.412 -0.133

T/J N0 N1 F+
0 F+

1 F−

0 F−

1

0 0.045 0.025 0.087 0.137 0.035 0.083
0.1 0.046 0.026 0.087 0.137 0.034 0.083
0.3 0.050 0.029 0.086 0.136 0.028 0.076
0.5 0.068 0.030 0.079 0.131 0.011 0.055

TABLE 1. The result of calculation of the free energy F , the energy gap ∆, the parameters of
the magnon energy A,B,C and the normal and abnormal averages N̄p, F̄

±

p .

We can see that all normal and abnormal averages are small and do not exceed 0.14. This
property of our solution justifies dropping of the six-order term in the effective Hamiltonian
(2.12). The smallness of these averages justifies also using of the Dyson-Maleev representation
for the Hubbard operators. Really, one can check that the occupancy Wn+n−n0

of the state
|n+, n−, n0 > of the Heisenberg algebra t+m, tm for our u − v − w transformation (3.7) is
determined by the formula

Wn+n−n0
= (1 +N0)

−3

(

N0

1 +N0

)n++n−+n0

(3.14)

and the total occupancy of the unphysical states Wunp is equal to

Wunp ≈ (6N2

0 + 4N3

0 +N4

0 )/(1 +N0)
4 = 0.044. (3.15)

All this prove that we found correctly the rotationally invariant ground state of the Hamiltonian
(2.7).

IV. Corrections to the mean-field energy of the ground

state.

For checking accuracy of our solution we compute the second order correction to the ground
state energy in the mean-field approximation (3.9). This correction is presented by the Feynman
diagram in Fig.1.
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Fig.1 The Feynman diagram for the second order correction to the energy of the ground
state.

We restrict our consideration to the case of the zero temperature. The part of the Hamilto-
nian (2.12) essential for computation of the correction of Fig.1 after u-v-w transformation has
form

Hint = (J/12)
∑

ki,m,n

{[16uk1
uk2

vk3
γk4

(uk4
+ wk4

) +

3γk1+k2
uk1

vk2
(uk3

vk4
− uk4

vk3
](−)n+mb+mk1

b+nk2
b+
−nk3

b+
−mk4

) +

(b+mk → bmk, uk → wk, vk → uk)}. (4.1)

Here summation k1, k2, k3, k4 is produced over the surface k1 + k2 + k3 + k4 = 0.
The first term in the square brackets in (4.1) follows from the L − L interaction and the

second term follows from the S − S interaction. The last term in the figured brackets is the
conjugated to the first term. On the base of the Hamiltonian one can easily compute the second
order correction of Fig.1 to the ground state energy. We compute the six-dimensional integral
over k1,k2,k3 by the Monte-Carlo method and getting the following result δE = 0.005NJ .

This correction to the ground state energy is sufficiently small that verifies correctness of
our mean-field solution of the Hamiltonian (2.12). The validity of the perturbation theory is
based on the smallness of angle integrals over k because another numerical small parameters
are absent in our theory. In fact, the small parameter is 1/z where z is the number of the
neighboring spin to our quartet of spins.

V. Influence of higher energy levels of the quartet on

the ground state energy

It is clear that transitions at the higher energy levels of the quartet reduce the ground state
energy of the quartet state of the two-dimensional Heisenberg antiferromagnets. As was noticed
above the most essential contributions originated from the higher triplet states |xm >, |ym >
(see (A.5). In order to consider this additional to |ϕ > and |tm > states we must modify
Eqs.(2.4)-(2.6) for the spin operators si taking into account contribution of |xm >, |ym >
states. On the base of the quartet wave function (A.5) we get the following representation for
the spin operators si

4si = 4(−)i+1Lt − 2(Lx − (−)iLy) + Stt + Sxx + Syy

+zi(Stx + Sxt − (−)i(Sty + Syt)) + (−)i(Sxy + Syx) (5.1)
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where zi = (1, 1,−1,−1) for i = 1, 2, 3, 4. The operator of the triplet excitations Lp and
the spin-1 operator Spq for p, q = t, x, y; m = 0,±1 are expressed by the same manner as
in Eqs.(2.5), (2.6). For the further analysis we replace the Habburd projection operators
Zϕϕ
n , Zϕ,pm

n , Zpm,ϕ
n , Zpm,qm′

n by the more convenient Bose operators x+
nm, y

+
nm, t

+
nm (xnm, ynm, tnm)

creating (annihilating) bosons of x, y, t type with projection m at site n. The corresponding
Dyson-Maleev representation for the Hubbard operators is of the form (2.11).

(Zϕϕ
n )DM = (1 − N̂n), (Zϕ,pm

n )DM = pnm,

(Zpm,ϕ
n )DM = p+

nm(1 − N̂n), (Zpm,qm′

n )DM = p+

nmqnm′ ,

N̂n =
∑

p,m

p+

nmpnm. (5.2)

Hamiltonian (2.1) can be represented as

H = J
∑

n

(s1n + s3n)(s2n + s4n) + J
∑

<n,n′

x>

(s2ns3n′

x
+ s1ns4n′

x
) +

J
∑

<n,n′

y>

(s2ns1n′

y
+ s3ns4n′

y
) (5.3)

where < n, n′

x > (< n, n′

y >) means summation over the nearest neighbor of block n in ~x (~y)
direction. Using the representations (5.1),(5.2) for the spin operators si one can rewrite the
Hamiltonian (5.3) in the momentum representation:

H = Ht +Hx +Hy +Htx +Hty,

Hx = J
∑

km

(

(2 + ηk/3)x+

kmxkm + (−)mηk(x
+

kmx
+

−k−m + xkmx−k−m)/6
)

,

Hy = J
∑

km

(

(2 − ηk/3)y+

kmykm − (−)mηk(y
+

kmy
+

−k−m + ykmy−k−m)/6
)

,

Htx = (iJ/3)
∑

km

(−)msin(2kxa)
(

tkm + (−)mt+
−k−m

) (

x−k−m + (−)mx+

km

)

,

Hty = −(iJ/3)
∑

km

(−)msin(2kya)
(

tkm + (−)mt+
−k−m

) (

y−k−m + (−)my+

km

)

. (5.4)

where ηk = (cos(2kxa) − cos(2kya))/2 and Ht is the Hamiltonian (2.12), which was discussed
previously. In Hx, Hy, Htx, Hty we excluded from our consideration all terms more than the
second order by creation and annihilation operators. These terms lead in the mean-field ap-
proximation to some renormalization of coefficients in the quadratic form (5.4) which does not
effect essentially on results obtained below.

The further plan is as follows. We take into consideration the Hamiltonians Hx and Hy

precisely and consider the Hamiltonians Htx and Hty as perturbation. We will check that such
approach is suitable for the computation of corrections to the ground state energy.

The HamiltoniansHx andHy can be easily diagonalized with help of the u−v transformation
(2.7). The coefficients αk, βk and δk in this case are

αk = J(2 ± ηk/3), βk = δk = ±Jηk/3, (5.5)
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where the upper sign ”+” corresponds to Hx and the lower sign ”−” Hy. As a result we get
the energy for the x, y quasiparticles in a form

εx,yk =
√

α2
k − β2

k = 2J
√

1 ± ηk/3 ≃ J(2 ± ηk/3 − η2

k/36). (5.6)

The average number of quasiparticles x, y in the ground state is sufficiently small

< nx >=< ny >=
∑

k

v2

k ≈ 1

144

∑

k

η2

k =
1

576
≪ N0. (5.7)

Hence, the contribution of Hx and Hy in the ground state energy can be estimated as 10−3J
per spin.

Notice, that dependence of the energies εx,yk on k as it follows from Eq.(5.7) is sufficiently
weak. This leads to the strong interaction inside the x− y sector of the quartet Gilbert space.
As it follows from Eq.(5.1) there are nonlinear terms in the total Hamiltonian of the spin-spin
interaction which lead to the strong interaction inside of the x− y sector. These terms in the
Hamiltonians have a characteristic form:

Hint = (2J/
√

3)
∑

k

γk(Lt,k(Sxy,−k + Syx,−k) (5.8)

This means that, in fact, we do not know the structure of excitations in the x − y sector.
But for computation of corrections to the ground state energy we can use the zero-dimensional
approximation for the Green’s function of the x, y quasiparticles [14]. In this approximation
the energy of x and y particles is simply 2J (5.6) and their Green’s function can be easily
found. One can show that in result of the interaction (5.8) a form of the Green’s function in
the energetic space became the Gauss form instead the Lorentz form as in the case of the weak
interaction. But what is the most important for us - a position of the center of peak in the
energetic space of the imaginary part of the Green’s function does not change at ǫ = 2J . The
corrections to the ground state energy due to the Hamiltonian (5.8) are equal to zero in this
approximation, because a contribution of the condensate the x− y particles are small Eq.(5.7).

The Hamiltonians Htx and Hty lead to an equal contributions to the ground state energy,
which can be calculated in the second order of the perturbation theory:

δEmf = −(N/2)
∑

ql

< 0|Htx|1tq,l, 1x−q,−l >< 1tq,l, 1x−q,−l|Htx|0 >
εxq + Eq

= −(J2N/6)
∑

q

sin2(2qxa)
(uq + wq)(uq + vq)

εxq + Eq

= −0.024JN, (5.9)

where u, v, w are defined in (3.11) and N is the number of spins in a plane. We see that the
interaction of x and y particles with t particle decreases the ground state energy by 0.024J per
spin. This correction will be reduced if we take into consideration excluded from Hamiltonian
(5.4) terms of third and forth order over the creation and annihilation operators.
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VI. Properties of the solution and discussion

The energy per spin of the quartet state at the temperature equal to zero is sufficiently high:
E/N = −0.6J . The coefficients B and C in the magnon energy (3.14) are negative and the
energy has minimum at k = 0 and possesses a gap. This gap is equal to 0.174J at T = 0.
Because our excitations have a gap, any long-range order is absent in the quartet magnetic
state. We can easily calculate the simultaneous spin correlation function using representation
(2.4) for spin operators and the representation (2.11) for the Hubbard operators:

Kαα′

ni,n′i′ =< sαnis
α′

n′i′ >= δαα′Kii′(r), r = rn − rn′ , (6.1)

where i, i
′

= 1, 2, 3, 4 numerate spins inside quartet, α, α′ = 1, 2, 3 are vector indices. According
to (2.4) we have

Kii′(r) = (−)i+i
′

< LznL
z
n′ > +

1

16
< SznS

z
n′ > . (6.2)

Substituting (2.5), (2.6) in (6.2) and using (2.11) one can get

Kii′(r) =
1

6
(−)i+i

′
(

2(1 − F+

0 − 4N0)N(r) + (1 − 2F+

0 )F−(r) + (1 − 8N0)F
+(r)

)

+
1

8

(

N2(r) − F−(r)F+(r)
)

, (6.3)

were N(r), F±(r) are the Fourier images of correlators Nk, F
±

k :

(

N(r), F±(r)
)

=
∑

k

exp(−ikr)(Nk, F
±

k ). (6.4)

When we derived (6.3) we take into consideration the second and fourth order over t+, t terms.
The contribution of the six-order terms is small over N̄p, F̄

±

p . The long-range order is absent in
our quartet state and asymptotic behavior is determined by the gap in the magnon spectrum
∆ and the effective magnon mass. It can be easily found from (6.3), (3.12), (3.6) and (3.14) :

Kij(r) = D(−)i+j(a/ξ)2(2πrξ)−1/2 exp(−r/ξ), r ≫ ξ (6.5)

The constant D is a function N̄p, F̄
±

p and the correlation length ξ is determined by the magnon
energy. Taking into account interaction of x and y particles with t particle does not lead to
the efficient modification of the correlation function since this interaction is strongly reduced at
small k due to the structure of contributions of the x, y particles into the correlation function
which are proportional to sin(2kxa) and sin(2kya). Therefore, a corrections to Kij is of the
order of δKij ∼ (a2/ξ2)Kij ≪ Kij. The behavior of the correlation function at the large
distance is similar to an antiferromagnet with short-range order [1, 7, 8] and contains the
”stagger” factor (−)i+j .

Our results essentially differ from results obtained in works [9, 10] where the quartet state
was proposed. We considered only the two-dimensional unfrustrated Heisenberg antiferromag-
nets. Our consideration is quantitative and does not contain unjustified assumptions. We did
not find any gapless excitations as in [6, 9, 10] . Moreover our magnetic excitations have the
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similar structure as in [10], but the energy is quite different. The ground state energy in [10] is
sufficiently low E0/N = −0.655J .

We connect these contradictions with the crude method of solution of the Hamiltonian
(2.7). The method of decoupling of Green’s functions used in [10] is rather indefinite and result
depends on the method of decoupling. It is reasonable to suppose that low energy obtained
in [10] as well as in the Schwinger boson method [9] is an accidental result of approximation.
The corrections to these approximations are not small and can destroy this low energy. We
believe that application of the Schwinger boson method to the Hamiltonian (2.7) [9] has only
qualitative character as well.

VII. Conclusion

Our consideration of the quartet state of the two-dimensional antiferromagnetic Heisenberg
model was sufficiently consistent. Following to [9] and [10] we have solved exactly the problem
for four spins and determined the initial ground state and structure of higher excitations. At
the next step we produced mapping of our quartet state into the Bose system with many degrees
of freedom. At the low temperatures and level of excitations this Bose system is reduced to the
system with the nonhermitian polynomial Hamiltonian. We constructed the ground state of
this Hamiltonian in the mean- field approximation and found a nontrivial solution of the self-
consistent equations for the normal and abnormal averages. We calculated the basic corrections
to the mean-field approximation and showed that they are small. We took into consideration
the most essential higher triplet excitations and calculated their contribution to the ground
state energy. We also found that these contribution are small. We did not consider the higher
singlet and quintet excitations but their contribution to the ground state energy definitely small
because the direct transitions from the initial ground state into these excited states are absent.
We did not find an unstable excitations in the quartet state.

AS a result we found that the ground state energy is sufficiently high E0/N = −0.6J
per spin. We believe that this result has a quantitative character due to the effective small
parameter of the perturbation theory. It is in our case 1/z where z is the number of spins
neighbors to the given quartet. In practice, the corrections are small due to smallness of the
angle integrals over the Brillouin zone.

Therefore, it is followed from our result, that the quartet state of the two- dimensional
antiferromagnetic Heisenberg model can not be in competition with the Neel state as it was
suggested in [10]. Is the quartet short range order in competition with the Neel short range
order for the doped antiferromagnet? It is an open question at present.
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Appendix A: Structure of a single quartet

Every quartet consists of the four spins and has the Hamiltonian Hq :

Hq = J(sasb) = (J/2)
(

(sa + sb)
2 − s2

a − s2

b

)

, (A.1)

where sa = s1 + s3, sb = s2 + s4. The states of a quartet can be numbered by the four quantum
numbers: S is the total spin of a quartet S = sa + sb, sa, sb are the spins of a and b subsystems
and m is the projection of the total spin. The general state is |sasbSm > and we have the
following states:

|ϕ >= |1, 1, 0, 0 >, |tm >= |1, 1, 1, m >, |ψ >= |0, 0, 0, 0 >,
|qm >= |1, 1, 2, m >, |am >= |1, 0, 1, m >, |bm >= |0, 1, 1, m > . (A.2)

The energies of these states are following:

Eϕ = −2J, Et = −J, Ea = Eb = Eψ = 0, Eq = J. (A.3)

It is convenient for our purpose to use linear combinations

|xm >= (|am > −|bm >)/
√

2, |ym >= (|am > +|bm >)/
√

2 (A.4)

instead the states |am > and |bm >. In this work we restrict our consideration by the ϕ -singlet
and the a, x, y- triplet. The wave functions of this states can be presented in a form:

|ϕ >=
1√
12

[(

+ +
− −

)

+

(

− −
+ +

)

+

(

− +
− +

)

+

(

+ −
+ −

)

−2

(

+ −
− +

)

− 2

(

− +
+ −

)]

,

|t1 >=
1

2

[(

+ +
− +

)

+

(

+ −
+ +

)

−
(

+ +
+ −

)

−
(

− +
+ +

)]

,

|t0 >=
1√
2

[(

− +
+ −

)

+

(

+ −
− +

)]

,

|t− 1 >=
1

2

[(

− −
− +

)

+

(

+ −
− −

)

−
(

− +
− −

)

−
(

− −
+ −

) ]

|x1 >=
1

2

[(

+ +
− +

)

−
(

+ −
+ +

)

+

(

+ +
+ −

)

−
(

− +
+ +

) ]

,

|x0 >=
1√
2

[(

+ +
− −

)

−
(

− −
+ +

)]

,

12



|x− 1 >= −1

2

[(

− −
− +

)

−
(

+ −
− −

)

−
(

− +
− −

)

+

(

− −
+ −

)]

|y1 >=
1

2

[

−
(

+ +
− +

)

+

(

+ −
+ +

)

+

(

+ +
+ −

)

−
(

− +
+ +

)]

,

|y0 >=
1√
2

[

−
(

− +
− +

)

+

(

+ −
+ −

)]

,

|y − 1 >= −1

2

[(

− −
− +

)

−
(

+ −
− −

)

+

(

− +
− −

)

−
(

− −
+ −

)]

, (A.5)

where signs ± note the direction of corresponding spins. The state |ϕ > can be also presented
as a sum of two possible dimer configurations:

|ϕ >= (|d12 > ⊗|d34 > +|d14 > ⊗|d23 >)/
√

3,

|dab >= (|a+ > ⊗|b− > −|a− > ⊗|b+ >)/
√

2. (A.6)

This representation shows that our primary state sufficiently close to the RVB-state.

Appendix B: Structure of selfconsistent equations

When solving the system of equations (3.12) we transform the two-dimensional over k inte-
gral into the one-dimensional over the energetic variable ǫ one. This is possible because the
dependence over k is not explicit but only via γk :

∑

k

f(γk) =

1
∫

−1

ρ(ǫ)f(ǫ)dǫ, ρ(ǫ) =
∑

k

δ(ǫ− γk),

1
∫

−1

ρ(ǫ)dǫ = 1. (B.1)

One can easily get for ρ(ǫ)

ρ(ǫ) =
2

π2
K(ξ′), ξ′ =

√

1 − ξ2, (B.2)

where K(ξ′) is a complete elliptic integral of the first kind. For the computation of integrals
over ǫ we have used the Gauss type formula:

1
∫

−1

ρ(ǫ)f(ǫ)dǫ =
n
∑

i=1

cif(ǫi). (B.3)

Which is precise for only polynomial of the order 2n − 1. The values ǫi are determined by
zeros of the orthonormalized polynomials n-th order on the segment (-1,1) with the weight ρ(ǫ)
. The coefficients ci also can be expressed in terms of these polynomials [15]. Substituting
the expressions (3.6) for αk, βk, δk in the terms N̄p, F̄p into Eqs. (3.12) we get the following
selfconsistent system of the equations

N̄p = (3/4 + 4N̄1 + 4F̄+

1 )Ip + (4N̄0 + F̄+

0 − 1 + 3N̄1/4)Ip+1 − δp0/2,

F̄−

p = −(2N̄1 + 2F̄−

1 )Ip − (8N̄0 − 1 − 3F̄−

1 /4)Ip+1,

F̄+

p = −(2F̄+

0 − 1 − 3F̄+

1 /4)Ip+1. (B.4)
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Here the integrals Ip are determined by the equations

fp = Ip −
∑

k

(γk)
pR−1

k (nk + 1/2) = 0, p = 0, 1, 2. (B.5)

As we can see from (B4) the five unknown variables N̄0, N̄1, F̄
+
0 , F̄

+
1 , F̄

−

1 can be expressed in
terms of the three integrals Ip for p = 0, 1, 2 which are determined by Eqs.(B5). These variables
Ip were found by searching zeroes of the function

Φ = (f0)
2 + (f1)

2 + (f2)
2. (B.6)

This method of solving of Eqs.(B4) is more effective than the direct solution of these equations.
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