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The t-J model effective hopping integral is determined from the three-band Hubbard model for
the charge carriers in CuO; planes. For this purpose the values of the superexchange constant J
and the charge-transfer gap Fg., are calculated in the framework of the three-band model. The
energies of the local states for added electron and hole are obtained from the systematic analytical
reduction of the three-band model and their kinetic energy is found from the accurate variational
approach using the ¢-J model. Fitting values of J and Eg.p to the experimental data allows us to
narrow the uncertainty region of the three-band model parameters. As a result, the t/J ratio of the
t-J model is fixed in the range 2.4-2.7 for holes and 2.5-3.0 for electrons. This approach explains
the formation of the Frenkel exciton and correctly describes the main features of the charge-transfer

spectrum.

I. INTRODUCTION

A large amount of work dedicated to high-T, super-
conductors agrees that an appropriate electronic model
which contains all essential orbitals is the three-band
Hubbard model.» ™ Some other works developing a multi-
band approach?™7 also support this belief.

It is also widely accepted that the low-energy physics
of insulating compounds can be described by the Heisen-
berg Hamiltonian. According to the earlier work by
Zhang and Rice® and later studies®~15 lightly doped sys-
tems are described by the simple t-J model. Different
techniques provide different exactness of the three-band
model to t-J model mapping and generate a wide range
of generalizations.!:*%15

In_our previous works!?!315 3 consistent low-energy
reduction of the three-band model to the generalized ¢-J
model in a realistic range of parameters has been per-
formed. It has been shown!® that the second-order cor-
rections to the local energy of the carrier and its hopping
integral are small (< 5%). The role of the next-nearest-
neighbor terms has also been discussed.

It is commonly believed that the 90% or even higher
accuracy of the ¢-J model as the low-energy electronic
model for high-T, superconductors justifies its wider
study'®™*® and this model remains the main pretender
in describing the superconductivity in cuprates.®"2! Re-
cent angle-resolved photoemission experiments?? can be
interpreted as direct support of some of the t-J model
properties.?? Both the anomalous behavior of these sys-
tems in normal state and the superconductivity it-
self seem to be described in the framework of the t-J
mode],19-21,23

The reasonable question from this point of view is what
is the role of either the three-band or more complex first-
principles. models? There can be several answers: (i)
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calculating the ¢-J model parameters for real systems;
(ii) giving insight into the experiments involving not only
the simple ¢-J model degrees of freedom.

In this paper we mainly address the question of the t-J
model parameters. The superexchange constant J for the
t-J model is directly measurable.?425 Hence the param-
eter to be determined is the effective nearest-neighbor
hopping integral. The problem of its calculation is not
connected with the accuracy of low-energy mapping from
the three-band model, which is always very high, but re-
sults from the uncertainty in the three-band model pa-
rameters. The three-band model in the conventional for-
mulation contains as inner parameters two on-site and
one- intersite Coulomb repulsions, two hopping integrals,
and splitting of the levels! which are not directly measur-
able. Some of them are rather badly determined. This
makes the calculation of the hopping integral for real sys-
tems questionable and even controversial.

We develop an obvious idea of fixing the three-band
mode] parameters by using experimental data. This idea
has already been exploited in the cluster calculations for
spectroscopic data® and for the superexchange constant
J in our previous work.'® A cluster-model analysis of the
material dependence of the charge-transfer gap and su-
perexchange interaction using the same model has been
made in Ref. 26. This work?® has shed some light on the
charge-transfer nature of the high-temperature supercon-
ductors and some of their general properties. Now, on the
basis of a better understanding of the low-energy model

of the electronic system and the magnetic polaron nature— ——- ——

of the t-J model carriers,'®27:28 we can calculate quite

accurately the charge-transfer gap. Self-consistent calcu-
lation provides a narrow range-of possible values for t/J.
Also, an excitonic feature of the charge-transfer spectrum
is obtained in agreement with recent experiments.?°
The paper is organized as follows. In Sec. II we dis-
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cuss the low-energy limit of the three-band model and
experimentally observable quantities. In Sec. III the cal-
culation of the superexchange constant J and the charge-
transfer gap Fgap is produced. In Sec. IV we discuss
the dependence of J and Eg,, on the parameters of the
three-band model and determine the range of the hop-
ping parameter ¢ for electrons and holes. In Sec. V the
properties of the excitonic state are considered. Section
VI presents our results and discussions. The technical
aspects of the work are given in Appendix.

II. THE LOW-ENERGY LIMIT OF THE
THREE-BAND MODEL AND OBSERVABLE
QUANTITIES

Previously, it was suggested that the three-band Hub-
bard model is an appropriate starting point for describ-
ing the electronic structure of CuO; planes.}»2 The Cu
dg2_,2 orbital and po(z,y) orbitals are strongly hy-
bridized. These orbitals are explicitly treated in the
three-band model with the justifiable assumption that
other orbitals do not directly participate in the low-
energy dynamics. The full Hamiltonian of the model is
defined by*

H=H,+ H;+ AH ,

Ho = €4 ancz +ep znma + Udznnnzu

Hy =ipq Z (dlapma + H.c.)

(Im),e

—top Z (PloaPmia + Hel) , 1)
(mm')ya
AH =U, anTnm +Voa Y. nianbg, (2)
{Im),aB

in the standard notation of holes at O(p) and Cu(d)
sites. The sign convention for oxygen orbitals in H; is
accepted.!®3® Qur approach to the description of low-
energy properties of the above model*® is based on taking
into account the main Coulomb (Uy) interaction exactly
and the others as perturbations.

In order to justify this method we briefly describe
here the magnitudes of the three-band model’s param-
eters. Different experimental,®”3! atomic,3 and band
calculations*3%:3* show that Uy =5-7 eV,32 7-11 eV,%6
Up =3-8 eV,” and V,q =0-1.7 eV. U, is always less than
Ug. There is a general agreement for the Cu-O system
that A = €, —€q4 is always > 0 and < Uy.3! It reflects the
facts that the first hole in the unit cell is predominantly
at the Cu site and the added hole has oxygen character.
tpa =1-1.6 eV (and it is unlikely that it is less than 1
eV) and t,, =0.5-0.7 eV.%3%3% This set of magnitudes
will be called hereafter the realistic region of parameters.

The consistent low-energy reduction of the three-band
model to the generalized ¢-J model has been performed in
previous works.'?1315 Our method of low-energy reduc-
tion has been based on construction of a set of local states

with different numbers of holes over the filled atomic or-
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bitals. The most essential states are the following.
(1) The vacuum state or the vacancy which is simply

vy =10) . (3)

(2) The one-hole states which represent the ground state
of the CuQ; plane,

|fe) = |e) —Vlge) , (4)

where |da) and |ga) are the copper and symmetrical oxy-
gen hole states with spin projection a, respectively.

(3) The two-hole states which are the Zhang-Rice sin-
glets:

= Uldo)

ley=Uildtdl)+VilgTql)
+Wi(ldtgd)—|digt)/V2. (5)

The coefficients U, V,Uy, V; Wy are functions of the pa-
rameters of the three-band model.2® At half filling Hamil-
tonian (1),(2) is reduced to the Heisenberg Hamiltonian
with spins 1/2 which are antiferromagnetically ordered
due to the second-order virtual transitions through the
set of two-hole states. Note that the above named spins
1/2 are exactly states |fo) [Eq. (4)].

It has been shown'®1® that for the case of near to half
filling the Hamiltonian of the three-band model is re-
duced to the Hamiltonian of the ¢-J like model of singlets,
vacancies, and spins:

— ) DX (Bet 1) Y XE°
i i

tte Y XPOXPU 4 tn Dy XX{

), ),

+ JZ SISp y (6)

vy

Ht-J - (E'u

where Xp® = |al)(lb| are the Hubbard operators at the

site [, and §; = o.3X] of /2. The constants E, and E.
are the local energies of the vacancy and singlet; p is the
chemical potential; ¢, and ¢; are the hopping integrals for
the vacancy and singlet (electron and hole), respectively;
J is the exchange constant. All five parameters E,, E.,
te, tn, and J are functions of the three-band model pa-
rameters. J is defined in the next section, other param-
eters are defined in the Appendix. It has been shown
that the relative magnitudes of the omitted terms in the
Hamiltonian Hy-; [Eq. (6)] are of the order of 10%.13:15

Since the Hamiltonian (6) describes many important
properties of the cuprates the real values of its parame-
ters are of great interest. As was noted above, the pa-
rameters of the primary model (1),(2) are known with
low precision. In this situation calculation of the observ-
able quantities is an urgent issue since it provides a way
to fix the parameters of Hamiltonians (1), (2), and (6).
The most reliable experimental values which we can de-
scribe quite accurately are the superexchange constant
J and the charge-transfer gap Eg.,. The experimental
values of J are 0.14 eV and 0.17 eV for the lanthruman

and yttrium systems, respectively.242% These values of
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J follow from measurementsof the velocity of sound for
magnons. The value of the charge-transfer gap is known
from a variety of optical measurements??:31:34:35 and is
close to 2.0 eV. Observation of photoconductivity at the
same energies shows that the excitations result in sepa-
rated electrons and holes.?9:3% We have taken most of the
clear experimental features of the charge-transfer spec-
trum from Ref. 29 where photoconductivity as well as
reflectivity data for LayCuQy4 are presented.

III. CALCULATION OF THE OBSERVABLE
QUANTITIES

The expression for the antiferromagnetic (AF) cou-
pling constant J in the framework of our approach is'®

|Dn[?
N (7

J=—2mV*Up+) =z,
n

The first term in Eq. (7) represents the exchange energy
between two holes (spins) due to the repulsion at an oxy-
gen atom. This contribution has the ferromagnetic sign
and arises as an exchange-interaction between the hole
states (4) due to their nonlocal nature. The constant V
is defined in Eq. (4); h; is in the Appendix. The second
term in Eq. (7) represents the correction to the energy
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two fermions in the final state are almost equal. In this
situation only transitions including highly excited states
(triplet, etc.) contribute. Thus, the relative magnitude
of the above term is small, Kn/J < 3%, and Eq. (7) is
correct.

The most general expression for the charge-transfer en-
ergy is

Egup = EN' — EY + EXI' ~ EX, (8)
where N refers to the total number of electrons, E;V is

the ground state energy, and ENX! is the minimal energy
of a system with one removed or added electron. For our
system Eq. (8) can be specified as

Egop = By, + AE. +AEy, (9)
where Eg,,p is the difference in energies between a singlet

and vacancy at local states separated by a large distance
and the ground state (see Fig. 2); AF, and AE}, are the
depths of the bands for electron and hole (vacancy and
singlet), i.e., the kinetic energy gain. Egap can be calcu-
lated in the framework of the three-band model, whereas
for the-calculation of AE, and AE; we will use the t-J
model.

The expression for E°

gap 10 terms of Eq. (6) is very

due to the virtual transition of the hole from the state — simple:

Eq. (4) into the two-hole states and back.'® Here n enu-
merates the two-hole states; matrix elements of transi-
tions D,, were calculated in Ref. 15; AFE,, are differences
in energies between the vacancy and two-hole states at
neighbor sites and the ground state energy (see Fig. 1);
the coefficients z, = 4 for the singlet and z, = —2 for
triplet two-hole states. It has been shown in Ref. 15
that the parameter of our low-energy reduction scheme
([Dnl/AE,) is of the order of 0.1. Since the next term
of S;S; type arises only in the fourth order, the direct
correction to the superexchange constant J (7) is very
small [~ J/(2E],,) < 2%]. The term KxnS;Sy Ny arises
in the third order of perturbation theory. It is omit-
ted in the effective Hamiltonian (6) for the following rea-
sons. Naively, it could be supposed that its magnitude
Ky /J ~ 10%, but the main part of this correction is al-
most exactly canceled due to compensation of the direct
and exchange processes. To be more specific, the am-
plitudes of the processes which differ by permutation of

X
X X X
X
X
X O X
X @ X
X

FIG. 1. The nearest-neighbor two-hole state and vacancy.
Black circle denotes two-hole state; empty circle denotes va-
cancy. Crosses are one-hole states (spins).

El,,=E.+E,. (10)

gap

The values of AE. and AFEx can be determined
from numerous analytical and numerical calculat-
ionst6—19:23,27,28,36,37 of the dispersion relation e(k) for
one hole in the t-J model on an antiferromagnetic back-
ground. There is a general agreement that the hole
(or vacancy) on the antiferromagnetic background cre-

ates a magnetic polaron of a small radius,'”?7 or, in
X X
x X X x O X
X X
: —)
X X
X X X X

X X

FIG. 2. The separated Zhang-Rice (ZR) singlet (hole) and
vacancy (electron). Black circle denotes singlet; empty circle
denotes vacancy. Crosses are one-hole states (spins).
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other words, the carriers are strongly dressed by the spin
waves.?® The influence of antiferromagnetism and strong
correlations is manifested in a special form of dispersion
relation e(k). For our calculations we use the results
from the earlier work by Sushkov!® where the hole wave
function and e(k) were obtained variationally:

E(k) =1.32J

_*.%{AJ - \/A2J2 + 16¢2[(1 + y) — (z + y)v2] }

and

AE =1.32J + %{AJ - \/AZJZ +16t2(1 + y) } (11)

where for Néel background A = 1.33,z = 0.56,y = 0.14.
Loss of energy due to the broken AF bonds (four per
carrier) is included. The result for the bottom of the
band at ¢/J = 2.5 from Eq. (11), AE = —1.2¢, coincides
almost exactly with the recent results of a Green func-
tion Monte Carlo calculation by Dagotto, Nazarenko, and
Boninsegni,?® AE = —1.255¢. Formula (11) is quite good
up to t/J =~ 5.8 As was noted in the number of works
(see for example Ref. 23), direct next-nearest-neighbor
hopping which is omitted in the #-J model (6) almost
does not change the depth of the band (11). It only shifts
the quasiparticle minima from points (+m/2,4m/2) to
(0, £7) and (&, 0).

Let us discuss now the characteristic values of all essen-
tial parameters that determine the observable quantities
J and Eg.p, [(7) and (9)]. In the realistic region of pa-
rameters of the three-band model one can easily obtain
results for J which are close to the experimental values
J = 0.14 ¢V and J = 0.17 ¢V for lanthanum and yt-
trium systems, respectively. The value for Egap (10) was
obtained in Ref. 15 and is equal to 3.2 eV in the same
region of parameters. The characteristic values of AE,
and AE}, (11) depend on the t/.J ratios for electrons and
holes. These ratios weakly differ and for a typical value
of t/J = 2.5 we have AE, = AE}, ~ 0.42 eV. Thus the
overall gain in energy due to magnetic polaron formation
is of the order of 1 eV, which is comparable with the
experimentally observed Egqp = 2.0 0.1 V. Therefore,
the magnetopolaron effect gives an essential contribution
to the value of the charge-transfer gap.

In Ref. 29 it was proposed that the usual phonon po-
laron effect contributes to the observable values of the
charge-transfer spectrum. The corresponding gain in en-
ergy was estimated as 0.5 eV. In our opinion the usual po-
laron effect does not contribute in the optical transition
due to the Frank-Condon principle. The magnetopolaron
effect has no such restriction since it involves electronic
degrees of freedom only. We will return to this question

in the Discussion.
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IV. PARAMETER SENSITIVITY

Thus, we have found the superexchange constant J
(7) and charge-transfer gap Egap (9) (Refs. 7, 25, 38) as
functions of the three-band model parameters:

J= J(tpd, tppa A’ Ud1 Up; Vpd),

Egap = Esap(tpdv top, &, Ug, Up, Vpd)' (12)

Both observable quantities strongly depend on hopping
integrals and A = €, — €4, which provides the way of
fixing these latter by the experimental values of the first.

As was discussed earlier, the abundance of the param-
eters makes questionable the calculation of the effective
hopping integral for the t-J model from the three-band
model for real CuQ; planes. While Coulomb repulsions
are known with fair precision (30%-50%), the situation
is complicated due to the very low precision of the direct
determination of tpq,tpp, and A, which affect all effec-
tive parameters more than others. Previously, the above
parameters have been determined from the analysis of
spectroscopic data.5” In our recent work we fitted A to
the experimental value of J.!%

Now, on the basis of a better understanding of the

1.5 2.0
t,. (eV)

FIG. 3. A vs tpg at constant J or Egp. Us = 7 €V,
U, =3¢V, Voa =1 eV, t,,/tpa = 0.5. Full curve, J = 140
meV, dashed curve, J = 170 meV, full curve with markers,
Egap = 2.0 eV; dotted curve, Egap = 2.05 eV.
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charge-transfer process and more accurate calculations,
fixing the worse known parameters using experimental
values of J and Eg,, suggests itself. We will show that
this procedure keeps the effective ¢; inside a narrow
enough region.

First, for further discussion we define O-O hopping as
tpp = Ytpd. In order to characterize the above mentioned
strong dependence of the parameters (12) one can calcu-
late A{tpa) at fixed J or at fixed Ega,, with other pa-
rameters (Coulomb repulsions and ) as constants in the
realistic region. We evaluate A vs tpq at J = 140 meV

“and 170 meV; Egap, = 2.0 eV and 2.5 eV (see Fig. 3).
Note that the profiles of the curves resemble those in the
diagram of U(t) for the simple one-band Hubbard model
where Egop, = U + 2W, W = —at, J = 4¢2/U, and the
crossing point uniquely determines U and ¢.

To be more specific, we first determined A for con-
stant J at an arbitrary ¢,4 and further move up or down
along the curve J = const to fix the value of Eg,,. We
used the data for La;CuOy4: J = 140 meV Ref, 24 and
Eg.p, = 2.1 eV (photoconductivity).?? Figures 4-6 show
the parameter of our prime-interest: the effective in- _
tegral for the hole in the t-J model. The parameter
Y = tpp/tpa is 0.5, 0.7, and 0.3 for Figs. 4, 5, and 6,
respectively. In all figures the simple dotted curve cor-
responds to Vpq = U, = 0; dotted curves with crosses,
Vea =0, U, = 3 eV, 6 eV; dotted curves with triangles,
Voa = 0.5 eV, 1 eV, U,=0; and full curves correspond

4.0
J=140 meV
E,,=2.1 eV
3.5F
3.0
—
~
K-
-
251
‘a
o
real
2.0} e,
1.5 ] 1 1 [ i 1 .
4 5 6 7 8 9 10 11

U, (eV)

FIG. 4. Effective hopping integral for t-J model hole vs Ua.
Dotted line, Vpa = Up = 0; dotted curve with crosses, Vpa = 0,
U, = 3, 6 eV; dotted curve with triangles, U, = 0,V,4 = 0.5,
1 eV; full curves, Vpq = 0.5 eV, U, = 3 eV (upper), Vpa = 1
eV, U, =6 eV (lower), v = 0.5.

4.0
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2.0

1.5

J=140 meV
E,=2.1 eV
T N SEre
¥ TR,

...

| ]

I ! I 1

5 6 7 8 9 10 11
U, (eV)

FIG. 5. All notations as for Fig. 4; v = 0.7.

4.0
J=140 meV
E,,=2.1 eV
3.50
3.0
H
=
2.5k
2.0F - ‘..
1.5 | I M R R
4 s 6 7 8 9 10 11
U, (eV)

FIG. 6. All notations as for Fig. 4; v = 0.3.
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4.0
J=140 meV
E,,,=2.1 eV
3.5}
3.0F
—
~~
:0
2.5}
2.0}
1.5 [ B | 1 1
4 5 6 7 8 9 10 11

U, (eV)

FIG. 7. Effective hopping integral for electron in the ¢-J
model vs Uy; curve markers as for Fig. 4; v = 0.5.

1.7
J=140 meV
E,.,=2.1 eV
1L5F
._x.
C
— 1.3
bl
a.
God
Lk a 5. .
AL a
‘s,
‘a..
TR A ... a
0.9 I i L
4 5 6 7 8 9 10 11

FIG. 8. Cu-O hopping integral vs Uq, curve markers as for
Fig. 4; v = 0.5.
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sl J=140 meV
E,,=2.1 eV
7.5+
6.5

5.5

4.5F

(E,-E ) (eV)

1.5 1 1 ] I | |
6 7 8 9 10 11

U, (eV)

FIG. 9. A vs Ug; v = 0.5.

to including both Coulomb interactions Vpq = 0.5 eV,
Up = 3 eV (upper), Voa = 1 eV, U, = 6 ¢V (lower).
The maximum in the first three curves is due to transi-
tion from A > Uy (unrealistic range) to A < Uy. All
variations of ts(Ug, Vpa, Up,7y) actually show only weak
dependence, and in the most preferential region, when
all Coulomb interactions are included, t; lies between 2.4
J and 2.7 J. We believe that our consideration is quite
accurate and well justified. Hence one can hope that
the interval for £/J obtained above provides the basis
for quantitatively correct calculations in the framework
of the t-J model; for example, for the recently proposed
mechanism of superconductivity in the ¢-J model which
provides a very (exponentially) t/J-sensitive gap value.2?

Some other features can also be explained. Figures 7-9
represent effective hopping |t.| for vacancy, t,q, and A,
respectively, vs Ug. Here always v = 0.5. Strong support
of our fitting procedure is the fact that self-consistently
determined ¢, and A (Figs. 8 and 9) lie in the most
appropriate region. From our calculation t,q =1.2-1.4
eV and A =2.5-4.5 eV, which are really close to cluster
calculations of Eskes and Sawatzky” and to the results of
other groups.®33:34

V. EXCITONIC STATE

The problem of consistently taking into account the
Coulomb interaction of the carriers in the framework of
the t-J-like model remains open. Several recent works
are devoted to this problem.3?
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As was suggested earlier,! the short-range part of the
Coulomb interaction may be kept by inclusion of the
nearest-neighbor Cu-O repulsion. Since V4 has been in-
cluded in our effective model, one can expect that at least
some of the effects will be caught.

In recent work?® a kink in the optical reflectivity some-
where below the charge-transfer peak (at 1.75 eV) was
observed. Since it had no associated photoconductivity,
it was related to the creation of an exciton. An essen-
tial role of the short-range Coulomb interaction was also
discussed in Ref. 29. In our way of reasoning the exciton
state, if it does exist;is the Frenkel exciton state, because
of the short-range nature of the interactions.

Recently it has become evident that an effective attrac- ~

tion can result from a pure magnetopolaron effect in the
t-J model.'®37 As was shown in Refs. 36 and 37, “con-
tact” interaction of two holes (without charge) dressed
by spin fluctuations is attractive for a special symmetry
of the wave function. However, the associated energy is
very small (< J/3 ~ 0.04 V). Contact means that the
interaction is due to exchange by spin excitations with
momentum g ~ 7, i.e., when polarons are overlapped (see
Fig. 10). It has been shown3” that this magnetopolaron
interaction is quantitatively the same for the Néel and
Ising backgrounds. (Obviously that additional Coulomb
interaction is independent of the magnetic order.) The
following consideration was performed on the Ising back-
ground since some functions have simpler form for it.

It is possible to combine the ideas of the short-range
Coulomb and magnetopolaron effects. The difference be-
tween EZ,, (10) when the hole and electron are separated
and AE, [Eq. (7), where n denotes the lowest singlet]
when they are close is the effective- Coulomb attraction
of the “bare” hole and electron (singlet and vacancy).
We can write an addition to Eq. (6) as

AH.=-V. > ninfg, (13)
<”’)!aﬁ

where n° is the electron number operator and n” is the
hole number operator. We have found that V_ is re-
ally almost independent of Uy and U, and V. = 0.4V,q.
Bare electron-hole attraction in itself does not necessar-
ily mean Frenkel’s exciton effect. One has to show that
the dressed electron and hole placed closely possess lower
energy than the mobile ones. In order tospecify the mag-
netopolaron language we reproduce here the wave func-

<2

FIG. 10. Configuration of interacting magnetic polarons
from Ref. 36.
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tion of the magnetic polaron from Ref. 18. For the Ising
background it has the very simple form

t 1 t ,
‘l,ka = _\/N__/—i ; dn‘r exp(zkrn),

t — ot + t
duy =vhiy+nST > Bl
n'€(n)

(14)

where n € sublattice with the spin s = —1/2, Al are pri-
marily hole operators; at t/J > 1, 12 = 1/2, u? ~ 1/8,
and n' is the nearest neighbor site to n. Thus, the ansatz
consists of a mixture of bare holes and holes with one
overturned spin. Contact interaction of these polarons
with opposite spins was considered in Ref. 37 (see Fig.
10). The gain in energy for “attracting polarons” arises
from the pure t-J model effects®” and effective Coulomb
attraction (13). The loss in energy results from the re-
striction of mobility. Competition of these evident effects
(without the Coulomb interaction) provides bound states
up to t/J =2-3.3837 Simply acting in the spirit of mag-
netic polaron interaction®” we obtain AFee =~ 0.35V,.
Thus at-Vpg = 1 eV, AE. = 0.14 V.

More accurate variational construction of the exciton-
magnetopolaron wave function yields AFey. =~ 0.5V, (at
t/J =2.5-3). This wave function consists of the mixture
of “bare” hole and electron at neighbor sites and hole
and electron with overturned spins. It is schematically
shown in Fig. 11(a). It differs from the simple-product
of the two polaron wave functions (electron and hole)
at the nearest neighbors by the different weights of its
components. Thus, at Vg =1 eV, AFEg =~ 0.2 eV,
which is slightly less than the observed AESP =0.25~
0.35 eV.2® In our calculations the interaction between
next-nearest-neighbor magnetic polarons was neglected,
which produced a small effect for the pure ¢-J model®?
but-may be essential for the problem with attraction.
[These configurations are shown in Figs. 11(b) and 11(c).]

CHD o

b c

FIG. 11. (a) Exciton magnetopolaron;
next-nearest-neighbor magnetic polarons.

() and (o)
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The answer may also partly lie in the rest of the long-
range Coulomb interaction.

VI. DISCUSSION

The detailed quantitative consideration of some of the
effective parameters of the low-energy models related to
description of the high-T, superconductors presented in
this work relies heavily on our earlier works. In these
works consistent mapping of the three-band Hubbard
model onto the effective t-J model'?1%:15 has been pro-
duced. Taking into account all essential interactions en-
ables us to correctly calculate local energies of various
sets of states with different numbers of particles and ma-
trix elements of interesting transitions. The combination
of properties of the local bare hole and electron (ZR sin-
glet and vacancy) and their magnetic polaron nature as
the carriers allows us to approach the calculation of some
observable quantities adequately.

We have calculated the superexchange constant J and
charge-transfer gap Egup. Their experimental values
strongly constrict a possible variation interval for the
quantity of great interest: the ¢/J ratio in the t-J model.
Self-consistent calculation of this ratio for a wide range of
parameters places it into the region t/J =2.4-2.7. Nar-
rowed ranges for the three-band model parameters have

also been determined: t,4 =1.2-1.4 eV and A =2.5-

4.5 eV. They coincide quite well with earlier cluster cal-
culations, which supports our self-consistent procedure.
An excitonic state of the Frenkel type induced by the
short-range Coulomb interaction with energy lower than
the charge-transfer transition by approximately 0.2 eV is
found.

We have also compared the width of the peak in e;(w)
at 2.3 eV from Ref. 29 that is of the order of 0.5 eV with
the total width of the charge-transfer spectrum. This to-
tal width is equal to the combined widths of the vacancy
and singlet bands. According to Eq. (11), the width of
the hole band is Wy = 2.0J at t; = 2.55J and the width
of the electron band is W, = 2.2J at t, = 2.75J. The
resulting total width of the charge-transfer spectrum is
about 0.6 eV. Thus the narrowness of the ez (w) spectrum
can also be easily reproduced by the magnetic polaron
approach.

One of the essential questions for the CuO;-plane sys-
tems, which we only briefly touched, is the phonon po-
laron effect. Its importance for real carriers in the CuO,
plane is intensively investigated.4%4! If it does not have a
projection on optics, or, as we believe, the Frank-Condon
principle is applicable, our calculated t,/J ratio is the
upper limit of the real parameter. This is due to mass
renormalization for real carriers. There is another view
on the polaron effect (see Refs. 29 and 42). It is stated
that electron-phonon interaction lies in an intermediate
range and thus the Frank-Condon principle is not obeyed.
If such is the situation, we underestimate the depth of the
bands (or overestimate Egap), and the effective t; should
be increased. Our estimation shows that this increas-
ing of t; is no more than 30%. Naturally, this problem

requires additional investigation.
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APPENDIX

In this Appendix we present some details of the tech-
nical treatment of the problems discussed in the paper.
According to our previous work,!® we use the following
transformation from the primary oxygen pi.,pi, opera-
tors to the operators g, § of the symmetrical and anti-
symmetrical oxygen states:

(@,@) = Y [Pra cos(kz/2) = pis cos(ky /2)]
k

X (1 + v&)~*/% exp(ikl), (A1)
where py, is the Fourier image of p;, for ¢; and py, for
d1; prb is the Fourier image of py, for ¢ and p;, for §;
y=[cos(kza)+cos(k,a)]/2. The summation in Eq. (Al)
is produced over the Brillouin zone, and the lattice con-
stant a = 1.

Since the ground states of both undoped and doped
systems do not consist of the antisymmetrical oxygen
state,>71% the reformulated Hamiltonian (1), (2) where
only essential degrees of freedom are kept is conveniently
expressed through the local and hopping parts.!® The
local part is

Hyoe = €4 Z n;ia + (ep - iuotPP) Z n?a

L lLa
+Uq Z nfing) + Vpafo Z n;ian?ﬁ
1 L,oB
= +Upho 3 nmd + 2tpado Y (df,a1e + He)
1

Lo

AHing = Vpaf1 Z nihnig
@wy,e8

= —2Uphs Y (S7S] -
)

(A2)

1,94
annz') y

with

S? = %q;'ao’aﬂqlﬂ, nq = 'n,?T + nﬂ. (A-?))

The hopping part is
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Hyop = 2tpars Z (df qrro +Hec.)
e

= _2tpp;u1 Z qz;qt’aa
,a

AHyop = pdf’ Z nfa[q;ﬂqpﬁ+H.c.]
@@),a8

+Uph' Z ni lghara + Hel].
(R

(A4)

All constants A, u, f, h in Eqgs. (A2) and (A4) are of the
Wannier nature. Their Fourier images and magnitudes
are given in Ref. 15. In order to group them together we
reproduce

A0=0.9581, \;=0.1401, uo==1.4567, 1;=0.2678 ,
f0=0.9180, f1=0.2430, ho=0.211, h;=0.059 ,
f'=0.1342, h'=0.030 .

We have treated the Hamiltonian Hjoe +AHin (A2) in
the self-consistent mean-field approximation® which en-
ables us to solve the problem of the local states at sites
with different numbers of holes. The matrix elements
of the Hamiltonian (A4) between states with a singlet or
vacancy at different sites in initial and final states lead to
the following expressions for the hopping constants (6):

th = 20 (W, V' — V2U,U') (WU — V2K V')

+ o (WiU' — V2V1V")2/2

= (Vpa AW U — V2U ViV ) (WL U — V2V1 V'),
te = —4MU"'V" —tou (V)2 (A5)
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where U’, V' are the coefficients of the |f) state nearest to
the singlet; and U, V" of those nearest to the vacancy.
The coefficients U’, V' and U”, V" are slightly different -
from the ones in Eq. (4) due to a distortion of |f) states
by the nearest vacancy or singlet. This distortion has
its origin in the short-range Coulomb repulsions due to
U, and V,q terms in the Hamiltonian (2). Note that it
changes the energy of the |f) states nearest to a vacancy
or singlet. We take this effect into consideration when we
calculate the quantity EJ, . Thus, we have for the total
energies E, and E, for a singlet and a vacancy [Egs. (6)
and (10)]

E.=E, +4Fs, —5Ey,

Eu :~"E0+4Efo —5Ef, (A6)
where E, and Fg are the local energies of singlet and
vacancy; Ey, and Ejfo are the energies of the |f) states
nearest to a singlet or vacancy and Ey is the energy of
the |f) state in an undoped sample. These states are
schematically shown in Fig. 2.

When the vacancy and the two-hole state-are created
at the neighbour sites (see Fig. 1) the difference in energy
between this state and the ground state is determined by
the relation

AE, = FE, + E; +3E¢, +3E5, — 8Ej . (AT)
These enérg'ies AE, are involved in calculation of the
superexchange constant J [Eq. (7)] and in the energy of

the Coulomb attraction of a singlet and vacancy in Sec.
V.

1 V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

2. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid
State Commun. 62, 681 (1987).

3 Yu. B. Gaididei and V. M. Loktev, Phys. Status Solidi B
147, 307 (1988).

4 M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M.
Schluter, Phys. Rev. B 45, 10032 (1992); H.-B. Schuttler
and A. J. Fedro, ibid. 45, 7588 (1992).

5 M. E. Simon, M. Balina, and A. A. Aligia, Physica C 2086,
297 (1993); F. Mila, Phys. Rev. B 38, 11358 (1988); H.
B. Pang, T. Xiang, Z. B. Su, and L. Yu, ibid. B 41, 7209
(1990).

& Y. Bskes, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. B
41, 288 (1990); H. Eskes and G. A. Sawatzky, ibid. 43, 119
(1991).

TH. Eskes and G. A. Sawatzky, Phys. Rev. B 44, 9656
(1991).

8 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

? F. C. Zhang and T. M. Rice, Phys. Rev. B 41, 7243 (1990).

10 3 1,. Shen and C. S. Ting, Phys. Rev. B 41, 1969 (1990).

118, V. Lovtsov and V. Yu. Yshankhai, Physica C 179, 159
(1991); J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys.
Rev. B 45, 7959 (1992).

12y, 1. Belinicher and A. L. Chernyshev, Phys. Rev. B 47,
390 (1993).

13 Y. I. Belinicher and A. L. Chernyshev, Physica C 213, 298
(1993).

M. E. Simon and A. A. Aligia, Phys. Rev. B 48, 7471
(1993); C. D. Batista and A. A. Aligia, ibid. 48, 4212
(1993).

15 V. I Belinicher and A. L. Chernyshev, Phys. Rev. B 49,
9746 (1994).

1% B. Dagotto, Int. J. Mod. Phys. B 5, 907 (1991), and refer-
ences therein.

" Yu Lu, Su Zhao-Bin, and Li Yan-Min (unpublished).

8 O. P. Sushkov, Solid State Commun. 83, 303 (1992); G.
Martinez and P. Horsch, Phys. Rev. B 44, 317 (1991).

' M. Yu. Kuchiev and O. P. Sushkov, Physica C 218, 197
(1993).

20 V. V. Flambaum, M. Yu. Kuchiev, and O. P. Sushkov (un-
published).

21Y. Ohta, T. Shimozato, R. Eder, and S. Maekawa (unpub-—

lished).

#2D. S. Dessau et al., Phys. Rev. Lett. 71, 2781 (1993).

%3 B. Dagotto, A. Nazarenko, and M. Boninsegni, Phys. Rev.
Lett. 73, 728 (1994).



243, M. Hayden, G. Aeppli, H. A. Mook, S-W. Cheong, and
7. Fisk, Phys. Rev. B 42, 10220 (1990).

25 T, Rossat-Mignod et al., Physica B 180-181, 383 (1992).

28 Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. Lett.
66, 1228 (1991).

27 A. Auerbach and B. E. Larson, Phys. Rev. Lett. 68, 2262
(1991).

28 R. Eder, K. W. Becker, and W. H. Stephan, Z. Phys. B 81,
33 (1990).

29 J. P. Falck, A. Levy, M. A. Kastner, and R. J. Birgeneau,
Phys. Rev. Lett. 69, 1109 (1992).

30 D, M. Frenkel, R. J. Gooding, B. I. Shraiman, and E. D.
Siggia, Phys. Rev. B 41, 350 (1990).

31 3. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev.
Lett. 55, 418 (1985).

32 y. V. Plambaum and O. P. Sushkov, Physica C 175, 347

50 RANGE OF THE #-J MODEL PARAMETERS FOR Cu0, . ..

13777

(1991).

33 W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

34 J, Fink et al., Physica C 185-189, 45 (1991).

35 8. Uchida et al., Phys. Rev. B 43, 7942 (1991).

36 D. Poilblanc, Phys. Rev. B 48, 3368 (1993).

37 A. L. Chernyshev, A. V. Dotsenko, and O. P. Sushkov,
Phys. Rev. B 49, 6197 (1994).

38 R. J. Birgeneau and G. Shirane, in Physical Properties of
High Temperature Superconductors I, edited by Donald M.
Ginsberg (World Scientific, Singapore, 1989), p. 152.

39 V. J. Emery and S. A. Kivelson, Physica C 209, 597 (1993).

40y, V. Kabanov and O. Yu. Mashtakov, Sov. Phys. JETP
76, 647 (1993).

1 A. Ramsak, P. Horsch, and P. Fulde, Phys. Rev. B 486,
14305 (1992).

42 C.Y. Chen et al., Phys. Rev. B 43, 392 (1991).



