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A microscopically based Hamiltonian of the generalized t-t8-J model is presented. Two types of the addi-
tional t8 terms are discussed. The numerical range of the amplitudes corresponding to the additional t8 terms
for the real CuO2 planes is derived from the three-band model calculations. Using the variational spin-polaron
approach the single-carrier dispersions in the generalized t-t8-J model are calculated both for the hole- and
electron-doped systems. The hole and electron band minima are found to be at points (6p/2,6p/2),
(0,6p), and (6p ,0), respectively. The band minima shifts uD (0,p)2(p/2,p/2)u are not small (;J). The band-
widths for both cases of doping are found to be 1.5–4.0 times larger than those in the t-J model.

I. INTRODUCTION

There is a general agreement that the three-band Hubbard
model is an appropriate basis for consideration of the spin
and charge excitations in the CuO2 planes of high-
temperature superconductors.1–3 One of the interesting prob-
lems for these systems is the hole energy spectrum. One-hole
energy calculation in the framework of the above-mentioned
model has been done by Barabanov et al.4,5 who used the
variational approach. This method seems to be too compli-
cated since the characteristic energy scale of the three-band
model is a few electron volts while that of the hole energy
spectrum is several tenths of an electron volt. Therefore, it is
natural to obtain first the low-energy limit of the three-band
model6–12 and then to investigate the spin and charge degrees
of freedom in the framework of this effective model.13–17

It is widely accepted by now that the simple model which
contains in itself the interacting spin and charge degrees of
freedom is the so-called t-J model

H t-J5t (
^i j& ,a

c̃ i ,a
† c̃ j ,a1J(̂

i j&
SiSj , ~1!

where ^i j& denotes the nearest-neighbor sites, Si is the local
spin operator, c̃ i ,a

† ( c̃ i ,a) is the constrained fermion creation
~annihilation! operator. The explicit form of this constraint
depends on the type of doping.

The considerable attention that this model has received
originates partly from the fact that it can be derived from the
above-mentioned three-band or more general d-p models
which take into account the detailed electronic structure of
the copper oxides. Recently it has been shown18 that this
derivation can be done quantitatively for the real CuO2
planes by the use of an additional calculation of some ex-
perimentally observable values.

The behavior of a single quasiparticle in the t-J model has
been studied intensively using both analytical and numerical
techniques.14,15,19,20 These investigations have clearly shown
that the naive tight-binding picture is completely inadequate
for the carrier motion on the antiferromagnetic background.
Namely, for the realistic t/J.223 the bandwidth is of the
order of 2J , not W058t . This strong ~of the order of 10

times! bandwidth suppression results from the distortion of
the spin background by the carrier hopping from one sublat-
tice to the other. In this situation, when the characteristic
energy scale becomes J , even small ~compared to t! single-
sublattice hopping t8 can be the key parameter for the subtle
details of the energy spectrum and other features of the
doped systems. This is clear since the single-sublattice mo-
tion does not disturb the spin background. Hence, a careful
analysis of the low-energy single band limit of the realistic
d-p models should be done keeping all essential terms over
the t8/J ~not t8/t) parameter.

The simplest form of the additional t8 terms can be writ-
ten as

H t85t8 (
^i j&2 ,a

c̃ i ,a
† c̃ j ,a , ~2!

emphasizing that the nonzero O-O hopping provides large
enough transfer amplitude to the next-nearest (^i j&2)
neighbor.20,21 This term ~2! alone has been found to be re-
sponsible for the CuO2 plane electron-hole asymmetry and to
be useful for the interpretation of the recent angle-resolved
photoemission experiments.22

The goal of the present paper is to exhibit the general
form of the additional t8 terms which one can get from the
three-band Hubbard or the other first-principle models, to
determine numerical ranges of all essential parameters for
the real CuO2 planes, and to calculate a single-particle dis-
persion using the spin-polaron ideas. Namely, we will dem-
onstrate that two types of the additional t8 terms naturally
originate in the single-band model: ~i! the terms arising from
the O-O hopping, and ~ii! the second-order high-energy
channels terms.23–25 The importance of both of them will be
clearly shown. The first ones are the key parameters for the
band minima shifts, while the second ones lead to the grow-
ing of the bandwidth. A quite similar model was investigated
in the mean-field approximation for a special range of pa-
rameters in the work by Onufrieva et al.26 This approxima-
tion neglects some essential features of the hole ~electron!-
spin interaction and thus has only a qualitative character.

Single-hole energy calculation in the limiting case of the
three-band model using the self-consistent Born approxima-
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tion has been done in the work by Starykh et al.27 In spite of
neglecting some features of the problem, the results of this
approach are in a qualitative agreement with the present pa-
per.

The quantitative reduction of the three-band model devel-
oped in Ref. 18 for the real CuO2 system provides the
method of the derivation of a set of the realistic ranges for all
additional t8 terms. We will show that the band minima shifts
as well as the bandwidths are not small for these ranges of
parameters. Also, the density of states ~DOS! characteristic
features will be discussed.

The paper is organized as follows. In Sec. II we give the
general form of the corrections to the Hamiltonian ~1!, dis-
cuss them, and show the possible parameters ranges. In Sec.
III we discuss our results for the spin-polaron dispersions
and for the DOS features. Finally, in Sec. IV, we draw con-
clusions.

II. REALISTIC LOW-ENERGY MODEL

The most accurate form of the effective t8 terms that fol-
lows from the three-band Hubbard model is:18,28

H t85t8 (
^i j&2 ,a

c̃ i ,a
† c̃ j ,a1t9 (

^i j&3 ,a
c̃ i ,a
† c̃ j ,a8 1tN (

^il j& ,a
c̃ i ,a
† c̃ j ,aN̂ l

1tS (
^il j& ,ab

c̃ i ,a
† sb̄āc̃ j ,bSl , ~3!

where ^i j&2(3) denotes the second ~third! next-nearest-
neighbor sites, ^il j& denotes the three nearest-neighbor sites
(^il& , ^ j l&), N̂ l is the number of fermions operator, Sl5

1
2

c l ,a
† sabc l ,b is the local spin operator, s is the Pauli matrix,

ā52a . The differences in the explicit form of the
c̃ i ,a
† ( c̃ i ,a) operators for the hole- and electron-doped systems
as well as the signs of t8,t9,tN,tS will be discussed later.
Now we will consider the origin of the t8,t9 and tN,tS terms.

Let us begin from the last ones. The second-order pertur-
bation treatment of the usual Hubbard model near half filling
provides the effective superexchange interaction @Eq.
~1!# and the so-called ‘‘three-site spin-dependent
hopping.’’24,29–31 Their importance for both the spectrum of
the charge excitation and the hole-hole interaction was
noted.29 These terms in Eq. ~3!, manifestly, have the rotation-
ally invariant form. In the case of the usual Hubbard model
mapping to the t-t8-J model, the expressions for the tN,tS

terms have the simplest form:

tN52

1

2
tS5

t2

2U
5

J

8
. ~4!

It should be noted that this expression ~4! is valid for both
types of doping, and that the signs of tN and tS are the same
for the electron and hole due to the second-order nature of
these terms. What would one expect from the three- or more-
band Hubbard model mapping?

Much more high-energy channels ~triplet, etc.! are opened
for the virtual second-order transitions in comparison with
the usual Hubbard singlet only case.28 This leads to two ef-
fects: ~i! tNÞ2(1/2)tS, and ~ii! th

N ,SÞte
N ,S , where e and h

denote the electron and hole hopping integrals, respectively.
The exact expressions for (tN)e ,h and (t

S)e ,h were derived in

Refs. 12 and 28. In spite of the contribution of the highest
states, the lowest singlet is the most important. The main
features of these terms in the effective Hamiltonian ~3! re-
main unchanged, i.e., ~i! sign(tN)52sign(tS)511 both for
the electron and hole, and ~ii! utNu;utSu.J/4, so that they
are not negligible.

In addition, one can point out that at the mean-field level,
N̂ and S operators should be replaced with their averages
^N̂& and ^S&, which effectively leads to

HMF
N ,S

5 t̃8 (
^i j&2 ,a

c̃ i ,a
† c̃ j ,a1 t̃9 (

^i j&3 ,a
c̃ i ,a
† c̃ j ,a , ~5!

with t̃8[2 t̃952(^N̂&tN1^S&tS), where the additional factor
2 for the diagonal hopping integral t̃8 as compared to the
‘‘oversite’’ t̃9 arises from the two possible ways for the vir-
tual processes on the square lattice. Thus, the second-order
terms in the Hamiltonian ~3! can be approximately consid-
ered as the renormalizations of the ‘‘bare’’ t8,t9 amplitudes
~5!. As was noted, these renormalizations do not change the
signs under changing of the doping type.

Now, return to the first two terms of the Hamiltonian ~3!.
They are the first-order terms arising in the first-principles
models for the CuO2 plane from the nonzero O-O hopping.
While inclusion of the t8 term is evident,15,20,21 inclusion of
the t9 term requires an additional explanation. Physically,
only the t8 term can arise for the next-nearest neighbor
CuO4-CuO4 local states due to the tpp matrix element.7,32

However, as was shown6,8,28,33 the correct state of the oxygen
low-energy degrees of freedom are the orthogonalized Wan-
nier states. Consequently, some ‘‘unphysical’’ transition am-
plitudes to the more distant neighbors arise. These ampli-
tudes fall rapidly with distance, and only the t8,t9 terms
should be kept in the low-energy model.28

As was recently proposed in many works, the absolute
sign of the t8 terms for the electron- and hole-doped CuO2
systems could be the source of the strong electron-hole
asymmetry in the magnetic phase diagram.16,34 The electron-
hole asymmetry arises naturally in the three-band
model.7,12,18,28 Not only the signs of the hopping integrals,
but also the orders of the elementary processes, that lead to
the effective hopping, differ for the electron and hole. Con-
sideration of a simple limiting case as well as discussion of
the electron-hole asymmetry and the dependence of the ef-
fective hopping integrals on the initial parameters are pre-
sented in Appendix A. Numerical results for the ranges of the
effective parameters, based on the exact formulas of Ref. 28
and the approach developed in Ref. 18, are shown in Table I.

TABLE I. t8,t9,tS,tN hopping parameters for the hole and elec-
tron. First and second rows show the lower and upper limits, re-
spectively.

t8/utu t9/utu tN/utu tS/utu

Hole 0.01 0.12 0.01 -0.07
th /J52.5 -0.25 0.16 0.07 -0.16

Electron -0.09 -0.11 0.07 -0.10
te /J523.0 0.03 -0.12 0.11 -0.12
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Further, we will consider these ~Table I! t8,t9,tN,tS values
and th52.5J , te523.0J12,18 as the realistic ones.

III. SINGLE-CARRIER ENERGY SPECTRUM

Before doing the energy spectrum calculation let us dis-
cuss the sense of the constrained Fermi operators c̃†( c̃) in-
troduced in Eq. ~1!. Both the hole and electron single-band
low-energy Hamiltonians derived from the three-band Hub-
bard model are naturally expressed in terms of the Hubbard
operators at the site i

X i
ab[uai&^biu, ~6!

here the states a ,b are either spin or singlet ~vacancy! local
states. Since the undoped state of the CuO2 plane is set up by
the localized holes in the Cu d10 and O p6 orbitals, the ad-
ditional low-energy hole forms a singlet with the local one,
whereas the electron in this background is a vacancy. There-
fore, it is convenient to rewrite t ,t8 parts of Eqs. ~1!, ~3! as

Hhole5 (
^i j&n ,a

t i j
h X i

saX j
as

1 (
^il j& ,ab

th
NX i

saX j
asN̂ l

1 (
^il j& ,ab

th
SX i

saX j
bs~sbaSl!,

Hel5 (
^i j&n ,a

t i j
e X i

0aX j
a0

1 (
^il j& ,ab

te
NX i

0aX j
a0N̂ l

1 (
^il j& ,ab

te
SX i

0aX j
b0~sbaSl!, ~7!

where ua&5u↑&,u↓& is a local spin state, us& and u0& are
singlet and vacancy states, respectively, ^i j&n denotes all es-
sential neighbor sites. Note, that the signs of the next-nearest
hopping parameters shown in Table I are related to these
particular @Eq. ~7!# order of the Hubbard operators. The signs
of the nearest-neighbor hopping are t ^i j&

h
.0, t ^i j&

e
,0. The

latter is not essential, since for the antiferromagnetic back-
ground the shift of the quasimomentum space by the vector
of the reciprocal lattice Q5(p ,p) changes the sign(t ^i j&) but
physically changes nothing.15

We wish to stress that when the kinetic-energy part is of
the single-band type @as in Eq. ~7!#, mapping of the Hubbard
operators onto the constrained Fermi operator basis is two-
fold.

If one prefers to retain the singlet ideology for the hole-
doped system, the first term of the Hamiltonian ~7! can be
rewritten identically as14

Hhole5 (
^i j&n ,a

t i j
h n i ,2a

h h i ,a
† h j ,an j ,2a

h , ~8!

and the background is created by the h i ,a hole at every site.
n i ,2a
h

5h i ,2a
† h i ,2a is the projection operator which project

out the vacancy states ~‘‘double electron occupancy’’!. This
representation for the electron over the hole background is

Hel52 (
^i j&n ,a

t i j
e ~12n i ,2a

h !h i ,a
† h j ,a~12n j ,2a

h !, ~9!

where the operators (12n i ,a) project out the double hole
occupancy. An alternative way is to consider the physical
hole as a ‘‘hole’’ ~vacancy! in the upper Hubbard band,35,36

and the physical electron as the ‘‘particle’’ ~singlet! in the
lower one. This freedom in choosing is not connected with
the initial orbital structure of the CuO2 plane, but follows
from the algebra of the Hubbard operators in Eq. ~7!. Hence,
Eq. ~9! for an extra electron on the electron background can
be written as

Hel5 (
^i j&n ,a

t i j
e n i ,2a

e e i ,a
† e j ,an j ,2a

e . ~10!

At first glance, it would seem that the choice of the particle
@Eq. ~10!# or ‘‘vacancy’’ @Eq. ~9!# language leads to the
change of the sign of the quasiparticle energy. This is not
true, since the vacancy energy has the sign of t i j reversed
compared to the particle energy.15,31 Therefore, Eqs. ~9! and
~10! lead to the same energy.

Thus, the explicit form of the constrained operators in
Eqs. ~1! and ~3! is c̃ i ,a5h i ,an i ,a

h (e i ,an i ,a
e ) for the physical

hole ~electron! system. Hereafter, we will work with the
Hamiltonian Eqs. ~1! and ~3!, constraint from Eqs. ~8! and
~10!, and parameters from Table I.

Properties of the single-particle in an antiferromagnetic
background were studied in detail by many
authors4,5,14,19,20,37–39 using different approaches. Their re-
sults coincide at the point that the carriers are strongly
dressed by the spin waves, i.e., quasiparticles are the mag-
netic polarons of a small radius with a strongly anisotropic
dispersion law and small enough quasiparticle residue. We
base our calculations on the results of Ref. 14. The suggested
trial function of an extra particle has the simple form14

ck,↑
†

5

1

AN/2
(
nP↓

S nkcn ,↑
† †

1Sn
†(

d
mk,dcn1d ,↓

† D exp~ ikrn!,

~11!

valid also for ck,↓
† after changing ↑⇔↓ and S1

⇔S2.
nP↑ (↓) means the site n of the spin-up ~-down! sublattice,
d is the unit vector to the nearest-neighbor site. The explicit
expressions for nk and mk,d are given in Appendix B. From
the string picture point of view this simplest ansatz ~11! con-
sists of the ‘‘bare’’ particle and four shortest ‘‘strings’’ of the
lattice constant length. It was shown14,40–42 that the one-hole
dispersion as well as two-hole contact and long-range inter-
actions, and even many-hole properties of the t-J model are
quantitatively well described using the above ansatz.

Consideration of the generalized t8 terms @Eq. ~3!# does
not require any changes in the trial function ~11!. Roughly,
this is due to the following reasons: ~i! the t8 terms lead to
the motion of the particle over one sublattice without distor-
tion of the spin background, that enables bare particle to
propagate freely; ~ii! the motion of the ‘‘dressed’’ particle
~with a string! mainly leads to longer strings, whose contri-
bution to the energy is of the order of teff8 /t and parametri-
cally small at t.3J . Hence, the expansion of the ansatz
makes a small decrease in the energy, since the part of the
ansatz ~11!, which would be mainly affected by the t8 Hamil-
tonian ~3!, is the bare one. The last statement will be dem-
onstrated below.
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As was noted, the t8-induced transitions occur in one su-
blattice, therefore a good preliminary consideration of the
role of each term in Hamiltonian ~3! can be done for the
Ising background. It allows us to find easily the leading con-
tribution to the band minima shifts, bandwidths, and effec-
tive masses. The N̂ and S operators in ~3! should be replaced
with ^N̂&51, ^S&5^Sz&561/2. The eigenenergy of the
magnetic polaron ~11! is

ek5
^cku~H t2J1H t8!uck&

^ckuck&
.E01b1gk

2
1b2~gk

2!2,

b154n2~ t812t914tN22tS!,

b254n2~2t92t8!,

gk51/2@cos~kx!1 cos~ky!# ,

gk
2

51/2@cos~kx!2 cos~ky!# , ~12!

where we omitted all high-order (teff8 /t) terms. E0 is the
depth of the band, b1 ,b2 are the inverse masses in the di-
rections ortogonal and parallel to the magnetic Brillouin-
zone boundary, respectively. Since for the Ising case a par-
ticle of the pure t-J model is dispersionless,43 n and m are
constants and at the realistic t.(223)J unu2.1/2,
umu2.1/8. Expression ~12! for the energy coincides almost
exactly with that obtained for the free spinless fermions.26

The main difference is the presence of the weight of the bare
particle unu2 in Eq. ~12!. In the realistic region of t ,t8,t9 etc.,
E0 is very close to its t-Jz model value E0.22t .

Two notes should be made. Firstly, the b1 term ~12! rep-
resents the dispersion which is degenerate along the
(p ,0)2(0,p) line, whereas the b2 term lifts out this degen-
eracy, placing the minima at the (6p/2,6p/2) ~if b2.0) or
(6p ,0),(0,6p) ~if b2,0) points. The difference
D (0,p)2(p/2,p/2)[b2 is proportional only to the ‘‘first-order’’
terms t8,t9 ~12! and does not depend on the second-order
tN, tS terms. Secondly, one can see from Eq. ~12! that in the
case tN.0, tS,0 and sign(t8)52sign(t9) b1 and band-
width W(5b1 or b12b2) are mostly determined by a few
(2tN2tS).

The above qualitative calculation for the simple Ising
background results in conclusions, which remain valid for
the Néel case. The energy difference between the
(p/2,p/2) and (p ,0) points, which is the crucial value for
the various calculations, has different signs for the hole- and
electron-doped systems and is not small for both cases. It
means that if the single-particle picture is valid for the finite
doping regime, the quasiparticle Fermi surface will be lo-
cated ~up to the high enough doping level! near the points
(6p/2,6p/2) and (6p ,0),(0,6p) for the hole- and
electron-doped systems, respectively.

Also, it can be shown from Eq. ~12! that, at least for the
upper limit of the t8,t9,tS,tN hopping parameters ~Table I!,
the bandwidths are large enough. Thus, one would expect
decrease of the DOS compared to the pure t-J model one.

Finally, the role of the bare particle for the considered
simple case is crucial, since the dressed part cannot propa-
gate freely in the absence of the spin fluctuations. Therefore,
the weight of the bare part in the trial wave function is the

subject of the prime interest. As was noted nbare5n2.0.5,
that is larger than in other works37–39 where
ñbare5 ñ2.0.3520.41. For n1 string54umu2.0.42 the agree-
ment is better: ñ1 string.0.44. This discrepancy is due to the
transfer of the weight from the rest of the exact particle wave
function ~with the infinite number of strings! to the weight of
the bare particle in the approximate ansatz ~11!. Thus, our
main approximation lies not in the shortness of the ansatz,
but in the overestimation of the bare particle weight. This
problem can be overcome by the simple renormalization of
n2 to ñ2.

Let us discuss now what changes of the above results can
be expected for the Néel background. The main changes
arise from the fact that due to the spin fluctuations the pure
t-J model particle is given the possibility to propagate. Evi-
dently, this will provide additions to b1 ,b2 and the band-
width W . Also, the ‘‘dressed’’ part will lead to some coherent
transitions. Due to the more complex structure of the matrix
elements of the Hamiltonian ~1!, ~3! for the Néel back-
ground, the simple tight-binding relations between b1 ,b2 ,
and W no longer hold.

The pure t-J dispersion law14,41 is

e t2J~k!52J2A~0.66J !214.56t222.8t2gk
2
10.01utu~gk

2!2

.E0
t2J

1b1
t2Jgk

2
1b2

t2J~gk
2!2, ~13!

where b1
t2J.10.65utu and b2

t2J.10.01utu. Due to the k
dependence of the trial wave function components nk ,mk
and the nonzero matrix elements for the string components,
the first-order contribution to the energy from the t8 Hamil-
tonian ~3! contains extra terms with the highest powers of
gk
2

e~k!5e t-J~k!1de t8~k!de t8,

~k!5dE01db1,kgk
2
1db2,k~gk

2!28

1Akgk
4
1Bkgk

2~gk
2!2, ~14!

where the db1,k , db2,k , Ak , and Bk coefficients weakly
depend on k through the unku

2 and umku
2 quantities ~see Ap-

pendix B!. As was discussed earlier, the highest-order cor-
rections to the energy from Eq. ~3! are of the order of
teff8 /t , and for the realistic t/J.(223) and t8 from Table I
can be neglected (;1/10). Since unku

2 is almost constant, the
renormalization to the ‘‘normal’’ uñu2 can be accomplished
by the simple replacing unp/2,p/2u

2.unp ,0u
2.un0,0u

2
⇒uñu2

.0.35.
Figures 1–4 present our results for the hole and electron

dispersions. The contour plot in Fig. 1 shows the character-
istic feature of the hole dispersion in the whole Brillouin
zone. The magnetic Brillouin-zone boundary as well as
the G(0,0)→M (p/2,p/2)→Z(p ,p)→Y (0,p)→G and
Y→M→X(p ,0) directions are shown. Figures 2–4 show
the dispersions along the G→M→Z→Y→G , and
Y→M→X lines. Figure 2 demonstrates the characteristic t-
t8-J hole dispersion ~solid line! for the average parameters
from Table I, pure t-J model hole dispersion ~dashed line!,
and pure t8-J dispersion t[0 ~dotted line!. This qualitative
picture clearly demonstrates that due to the t8 terms the sys-
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tem becomes less strongly correlated because of the liberat-
ing of the bare carrier. Figures 3 and 4 show dispersions
along the same lines. Figure 3 describes the hole-doped sys-
tem, and Fig. 4 the electron-doped one. Solid curves are
related to the upper and lower limit for the t8,t9,tN,tS param-
eters from Table I, the dotted satellites are related to the same
parameters for the renormalized bare carrier weight ~up to
0.35!. The dashed lines demonstrate the pure t-J model dis-
persions.

Our calculations of the t8 part ~14! in the dispersion dem-
onstrate that the bare particle contribution for the Néel case

is very close to the results for the Ising background and that
the dressed particle contribution plays a minor role (,0.2)
compared to the bare one. Using the data from Table I, the
variations of the inverse mass values and the bandwidths for
the hole and electron are found as follows:

b1
h
5~3.825.3!J , b1

e
5~3.525.0!J ,

b2
h
5~1.323.1!J , b2

e
52~0.721.6!J , ~15!

Wh
5~5.127.1!J , We

5~5.228.4!J .

Despite some changes in the inverse mass values ~15!, the
features discussed earlier for the Ising case are still valid.
Thus, the shifts of the band minima are rather large, the
bandwidths are substantially wider as compared to those in
the t-J model, and the role of the bare particle weight re-
mains the most important.

FIG. 1. Contour plot of e(k) for a hole. th /J52.5, t8,t9,tN,tS

are taken as the average values of the upper and lower limit from
Table I. Inner square is the magnetic Brillouin-zone boundary.
G(0,0),M (p/2,p/2),Z(p ,p),Y (0,p), and X(p ,0) points are indi-
cated.

FIG. 2. Dispersion curves along the lines G→M→Z→Y→G ,
and Y→M→X . Solid curve is the t-t8-J hole dispersion for the
same parameters as in Fig. 1, dotted curve is the pure t8-J disper-
sion (t[0), dashed curve is the pure t-J model dispersion.

FIG. 3. Dispersion curves along the lines as in Fig. 2 for a hole.
Solid curves correspond to the upper and lower limits of the t8
parameters ~Table 1!. Dotted curves correspond to the same with
renormalized bare carrier weight. Dashed curve is the pure t-J
model dispersion.

FIG. 4. Dispersion curves along the same lines as in Fig. 2 for
an electron. All notations as in Fig. 3.
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One of the unsolved problems of the t-J type models is
whether the free-particle approximation works for the doped
systems.31,38,44 Therefore, the extension of the single-particle
calculation onto the case of finite doping indeed requires
justifications. Some of them can be found in Refs. 20, 31,
and 38. We simply accept the free particle picture and have
calculated the chemical potential as the function of concen-
tration for the dispersion law ~13!, ~14!. From Figs. 1–4 it is
clear that the ground state is (6p/2,6p/2) for the hole, and
(0,6p), (6p ,0) for the electron. Both minima are not shal-
low: uD (0,p)2(p/2,p/2)u;J . At the same time, the bandwidths
are larger than t-J ones (W t2J;2J), and the accumulation
of the DOS at low energy is smaller than for the t-J model
case. This point may be of interest in view of intensive dis-
cussion of the possible Van Hove singularity at the optimal
doping.45 The above-mentioned two different tendencies to
increase the minima shifts and to decrease the DOS require a
quantitative consideration. Figures 5 and 6 show our results
for the DOS versus energy E/J and versus concentration d ,
respectively. One can see that despite the DOS lowering, it

remains rather large at low energies @since (328)J!8t#,
and the peaks in the DOS shift to higher concentrations
(dmax;0.420.5), compared to the t-J case
(dmax;0.120.2).

IV. CONCLUSIONS

To summarize, in this paper we have studied the micro-
scopically derived extended type of the t-t8-J model. Previ-
ous investigations of the three-band model allowed us to
establish the necessary next-neighbor terms for the low-
energy single-band model. In this work the efficient scheme,
developed previously for the calculation of the t-J model
parameters of the real CuO2 systems, has been applied to the
effective t8-terms calculation. This has enabled us to deter-
mine numerical ranges for all t8 terms both for the electron-
and hole-doped systems.

We also have performed simple calculations of the single-
particle dispersion using the variational approach to the spin-
polaron problem. Both types of doping have been considered
within the above-mentioned realistic values of the t , t eff8 pa-
rameters. The importance of all teff8 terms has been clearly
demonstrated: the tN, tS terms of the second-order origin are
responsible for the widening of the bandwidth, and the t8,
t9 terms arising from the O-O hopping bring about the shift
of the groundstate minima. It has been found that the minima
shifts are large enough (;J) and have opposite signs for the
hole and electron systems. Also, the bandwidths have been
found to be 1.524.0 times larger than those in the pure t-J
model.

An investigation of the finite doping regime for the simple
free-particle approximation has been carried out. The Van
Hove peak in the DOS has been found to decrease and move
to a higher doping level from its t-J model position.
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APPENDIX A

It will be useful for the future discussion to consider the
simple limiting case of the three-band model, when the Cu-O
hopping is much less than both the Cu-Cu Coulomb repul-
sion Ud and Cu-O levels splitting D (tpd! Ud ,D).

FIG. 5. DOS vs energy E/J for the pure t-J model and electron
and hole t-t8-J model ~upper and lower limits in Table I!.

FIG. 6. DOS vs concentration d .
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The additional hole moves over the spin background as a
Zhang-Rice ~ZR! singlet,6 whereas the electron moves as a
vacancy. Corresponding hopping integrals in the lowest order
of tpd /D are

th50.53
tpd
2

D̃
10.275tpp , te52S 1.0612.03

tpp

D̃
D tpd2

D̃
,

th850.09
tpd
2

D̃
20.124tpp ,

te852S 0.1820.92
tpp

D̃
D tpd2

D̃
,

th950.053
tpd
2

D̃
10.062tpp ,

te952S 0.10510.46
tpp

D̃
D tpd2

D̃
,

D̃5D21.45tpp . ~A1!

The first two expressions for the hole hopping integrals co-
incide with those in the work by Jefferson et al.,8 except the
signs. The signs are opposite for the following reasons.

In calculation of the transfer amplitudes of the t-J model
singlet or vacancy from the three-band model, it is conve-
nient to construct the basis of the wave functions as the di-
rect product of the states at the sites:
(Â1

†u0&1^ Â2
†u0&2^ . . . ). The Â i

† operators can be consid-
ered as the Hubbard operators at the site i , which create the
singlet or spin state over the vacuum state u0& i . Namely, the
two-site wave function of the form us& i^ u↑& j has been used
for the calculation of the singlet (us& i) hopping integrals ~see
Refs. 7, 8, and 28!. This convenience is due to the complex
structure of the three-band low-energy states. For example,
ZR singlet consists of the linear combination of a copper
singlet ~double copper occupancy!, an oxygen one ~double
oxygen occupancy!, and a copper-oxygen one. This state is
hardly expressed in the terms of the Fermi creation operator
which acts on the spin background. However, the use of the
direct-product basis is incorrect when more than one Hub-
bard Â i

† operators are of the Fermi type. This is evident from
their anticommutativity. In other words, the wave function of
the half-filled background ~one fermion per site! cannot be
uniquely determined in this basis. Formally, the two-site
wave function us& i^ u↑& j is determined correctly since the
singlet us& i is the boson. Nevertheless, for the matrix ele-
ments of the hopping Hamiltonian, which consists of the
creation and annihilation operators of an additional fermion,
one gets

t i j^↑u i^ ^su j@~ us&^↑u! j•~ u↑&^su! i#us& i^ u↑& j

[t i j^↑u i^ ^↑u j•u↑& i^ u↑& j . ~A2!

Thus, the matrix element reduces to the projection of the one
half-filled state to the other and hence has an uncertain sign.
Therefore, to avoid this uncertainty one has to use a more

conventional basis, namely: c i
†ugs&, where ugs& means the

ground state ~one fermion per site!, and c i
† is the creation

operator of the additional fermion. This careful approach
leads to the signs of the hopping amplitudes as presented in
Eq. ~A1! and in Table I. Note that this difference of the bases
is absent for the single fermion in the lattice or for particles
obeying Bose statistics. To obtain Eq. ~A1! we have used the
general expressions for t i j from our previous works.12,28

Approximate expressions ~A1! for t , t8 and t9 are good
enough for large and even moderate D . Thus, our calcula-
tions of the t , t8, t9 realistic values for the CuO2 plane, show
that ut8u,ut9u at least for small values of Vpd ~Cu-O Cou-
lomb repulsion!. This is due to the partial compensation of
the Cu-O and O-O contribution to the t8 term, that can be
seen in Eq. ~A1!. It should be noted that the tpp contribution
to the hopping of the vacancy arises only in the third order of
tpd /D (tpp /D). The above-mentioned compensation of the
O-O and Cu-O amplitudes for the electron te8 term is even
more pronounced than for the hole. The exact formulas12

provide very small te8 for Vpd50.
To be more specific, in our calculations we have followed

the idea of the narrowing of the uncertainty region for the
low-energy model parameters using some experimentally ob-
served values. This approach was developed in Ref. 18 and
enabled us to calculate th and te for the real CuO2 planes.
Our results for the t8,t9,tN,tS hopping integrals obtained in
the same way for the two types of doping are shown in Table
I.

We wish to stress the strong Vpd dependence of t8 both
for the hole and electron carriers. This t8(Vpd) dependence
can be easily understood. The rising of Vpd requires the low-
ering of the D for the fixed values of the observable quanti-
ties. Thus, the occupation number of oxygen sites also rises,
which immediately leads to the growing of the tpp contribu-
tion. Note, that due to the smaller role of the oxygen degrees
of freedom for the electron, its hopping integrals are less
varying than those for hole. This is in agreement with the
cluster calculations by Eskes and Sawatzky.7,32 In our three-
band model calculations we used the experimental values of
J50.14 and J50.17 eV ~lanthanum and yttrium systems!.

APPENDIX B

Explicit expressions for the components nk , mk ~Ref. 14!
are

nk5
1

2 FD012Sk
XSk

G1/2,
mk,d5mk

1
1mk

2gke
ikd

5

t

@YSk~D012Sk!#
1/2 @~11v !2~u1v !gke

ikd# ,

~B1!

where parameters X , Y , u , and v are expressed in terms of
ground-state correlators14 and for the Néel state are
D051.33J , X50.8, Y50.72, u50.42, v50.12.
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Sk[e t2J(k) is the pure t-J model dispersion ~13!. Since
Sk;utu at t.J , nk and mk

1 , mk
2 are weakly varying functions

of k.
Explicit expressions for the db1,k , db2,k , Ak , Bk coeffi-

cients @Eq. ~14!# are

db1,k5nk
2C1

1
1~mk

1!2C1
2
1~mk

2!2C1
3
1mk

1mk
2C1

4 ,

db2,k5nk
2C2

1
1~mk

1!2C2
2
1~mk

2!2C2
3
1mk

1mk
2C2

4 ,

Ak5nk
2C3

1
1~mk

1!2C3
2
1~mk

2!2C3
3
1mk

1mk
2C3

4 ,

Bk5nk
2C4

1
1~mk

1!2C4
2
1~mk

2!2C4
3
1mk

1mk
2C4

4 , ~B2!

where

C1
1
53t816t9112tN28.4tS, C1

2
525.8t925.8tN21.6tS,

C1
3
528.2t928.2tN12.9tS,

C1
4
59.8t826.7t9112.8tN13tS,

C2
1
523t816t9, C2

2
521.5tS, C2

3
5C2

4
5C3

1
5C4

1
50,

C3
2
55.8t8111.5t9123tN212.2tS,

C3
3
510.6t8116.4t9137.7tN215.1tS,

C3
4
511.5t8123t9123tN230.4tS,

C4
2
525.8t8111.5t914.6tS,

C4
3
5210.6t8116.4t924.9tN13.5tS,

C4
4
5211.5t8123t9. ~B3!

The numbers in Eq. ~B3! result from ^S i
zS j
z&, ^S i

1S j
2&, and

other spin correlators for various neighbor sites.
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