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The t-J model in the spinless-fermion representation is studied. An effective Hamiltonian for the quasipar-
ticles is derived using a canonical transformation approach. It is shown that the rather simple form of the
transformation generator allows one to take into account the effect of hole interactions with the short-range
spin waves and to describe the single-hole ground state. Obtained results are very close to ones of the
self-consistent Born approximation. Further accounting of the long-range spin-wave interaction is possible on
a perturbative basis. Spin-wave exchange and an effective interaction due to minimization of the number of
broken antiferromagnetic bonds are included in the effective quasiparticle Hamiltonian. The two-hole bound
state problem is solved using a Bethe-Salpeter equation. The only bound state found to exist in the region of
1,(t/J),5 is the d wave. Both types of the hole-hole interaction are important for its formation. A discussion
of the possible relation of the obtained results to the problem of superconductivity in real systems is presented.
@S0163-1829~97!04429-9#

I. INTRODUCTION

The problem of the hole motion in an antiferromagnetic
~AF! background of local spins originally arose in connec-
tion with the study of the localized magnetic insulators,1,2

and has received considerable attention since the discovery
of the CuO 2 based high-temperature superconductors. It is
well established that at zero doping these materials are insu-
lators with the long-range AF order, and one is well de-
scribed by the two-dimensional Heisenberg model.3 The in-
stability of long-range AF order under the small finite doping
of carriers is due to the strong interaction of spins with mo-
bile holes.4,5 The simplest model, which contains in itself
this strong interaction, is the t-J model.6 Extensive studies of
this model’s validity for the description of the real CuO 2
plane result in a number of quantitative predictions for the
range of parameters and in the set of possible t-J model
generalizations.7–11 It is widely believed that the essential
low-energy physics of the high-Tc systems can be studied
using the pure t-J model

H t2J5t (
^i j& ,a

c̃ i ,a
† c̃ j ,a1J(̂

i j&
S SiSj2

1

4
N iN j D ~1!

in the standard notation of the constrained fermion creation
~annihilation! operators c̃ i ,a

† ( c̃ i ,a), ^i j& denotes the nearest
neighbor sites, Si is a local spin operator, and N i is the op-
erator of the number of spins. Physically, the t term de-
scribes an additional hole ~singlet! hopping on the back-
ground of hole spins, or, otherwise, the hopping of hole
~vacancy! in the electron spin background. An important fea-
ture of this term is the absence of the double-particle occu-
pancy at any site. Exclusion of doubly occupied states does
not allow for the implementation of mean-field-type approxi-
mations.

The single-hole problem in the t-J model ~1! has been
extensively studied by the various analytical12–22 and
numerical23–26 techniques, which have provided the deep un-
derstanding of the character of the hole motion. For a review

see, e.g., Refs. 27 and 28. Analytical results obtained within
the self-consistent Born approximation ~SCBA! ~Refs. 12,
13, 20, and 29! agree very well with the exact diagonaliza-
tion studies on clusters,28 variational,16–18 and other
approaches.19 The main feature of hole motion revealed in
these studies is the strong renormalization of the naive tight-
binding result for the band energies due to the hole ‘‘dress-
ing’’ by the cloud of spin excitations. This leads to a narrow
band (;2J for t/J.1 and ;t2/J for t!J) with minima at
the 6(p/2,6p/2) points on the boundary of the magnetic
Brillouin zone ~MBZ!.

The two-hole problem has received much attention due to
the searching of possible pairing mechanisms. In spite of the
large amount of work a full consensus on the existence of
bound states in the t-J model is absent. There was much
work devoted to the study of the spin-fluctuation pairing and
corresponding type of superconductivity.30–34 There is strong
evidence that the long-range spin-wave exchange, which is
the source of the dipolar interaction between holes,32,35 can
lead to the d-wave pairing in the t-J model. As was estab-
lished in Ref. 36 the corresponding bound states are shallow
and have a large size. Many efforts aimed at the study of the
t-J model bound states originated from the fact that the two
holes can minimize their energy by sharing the common link,
that can lead to the picture of superconductivity by ‘‘pre-
formed’’ pairs.37 More specifically, numerical works in exact
diagonalization on small clusters and Monte Carlo studies,
which account for the latter interaction, provide negative en-
ergy of the bound state of the dx22y2 symmetry up to the
values t/J;325,38–41 which are relevant to the real com-
pounds. Variational42 and a kind of quasiparticle
calculation43 yield the critical value of t.2J for this inter-
action, which is somewhat lower than the realistic one. Gen-
erally, there is no agreement on the energy of the ground
state of two holes and on their spatial correlation function44

even between the similar approaches.
In this paper we propose a canonical transformation ap-

proach to the t-J model problems that allowed us to turn
from the t-J model to an effective quasiparticle Hamiltonian,

PHYSICAL REVIEW B 1 AUGUST 1997-IIVOLUME 56, NUMBER 6

560163-1829/97/56~6!/3381~13!/$10.00 3381 © 1997 The American Physical Society



describing the ‘‘dressed’’ holes and their interaction of the
~i! ‘‘contact’’ type and ~ii! via spin waves, and then to find
the ground state of two such quasiparticles. Both types of
interactions are accurately accounted for by our approach. In
some sense, we use the ideas of the earlier works by Sushkov
et al.,17,5,45,36 where the same scheme was realized using
quite different approach.

To begin, let us describe the form of the Hamiltonian ~1!
we start with. The most popular analytical approach to the
t-J model is the SCBA,12,13,20,29 which is based on the
spinless-fermion representation for the fermion operators and
Holstein-Primakoff12,20 or Dyson-Maleev46 representation
for the spin operators for the t-J model. Namely, this ap-
proach is applied to the spin-polaron Hamiltonian, which is
followed from the t-J one ~1! in the presence of the long-
range AF order and in the linear spin-wave approximation:

H.2J(
q

vqaq
†aq1t(

k,q
~M k,qhk2q

† hkaq
†
1H.c.!1DH ,

~2!

where h†(h), a†(a), are the spinless hole and magnon op-
erators, respectively, 2Jvq52J(12gq)1/2 is the spin-wave
energy, M k,q54(gk2quq1gkvq), uq ,vq are the Bogolubov
canonical transformation parameters, gk5(coskx1cosky)/2.
The spinless-fermion representation fulfills the above-
mentioned constraint on double occupation exactly20 and,
therefore, the only approximation made is the spin-wave one.
As it was recently shown in Ref. 29, the two-loop corrections
due to the higher-order terms in the t term of Eq. ~2! are
analogous to the higher-order nonlinear spin-wave correc-

tions to the linear spin-wave theory, and have the same order
of smallness.

To do mapping of the Hilbert space of the constrained
fermion and spin operators onto one of the spinless fermions
and bosons one has to care about projecting out the unphysi-
cal states with the boson and fermion at the same site. The
procedure of including projection operators into the J term
~1! is described in Sec. V B. This adds some interaction
terms to the spin-polaron Hamiltonian (DH) ~2!. They are
important for the consideration of the two-hole problem.
Namely, the main part of them is an explicitly written term
of the effective hole-hole attraction due to minimization of
the number of the broken AF bonds.

We will study this version of the t-J model with the ad-
ditional interaction terms arising from the projection opera-
tors in the J term. In such a formulation Eq. ~2! is explicitly
a problem with very strong interactions. The problem of the
interaction of fermion excitations with a bosonic field and
the resulting effective ‘‘dressing’’ of fermions by the virtual
cloud of bosons is an old and well-investigated problem, and
a powerful approach to it is the canonical transformation
one.47 Therefore, one can hope that a canonical transforma-
tion can be found for the t-J model too. Briefly, we will
show that a rather simple transformation, which takes into
account the main effect of the strong interaction ;t and
allows one to consider the rest of the interaction perturba-
tively, exists.

To complete the consideration of the known facts about
the Hamiltonian ~2! let us note that in the recent work by
Reiter48 an exact wave function of the single hole in an AF
background has been obtained within the SCBA:

h̃ k
†u0&5AZk Fhk

†
1(

q
M k,qGk2q~Ek2vq!hk2q

† aq
†
1•••1 (

q, . . . ,qn

M k,qGk2q~Ek2vq!•••M k•••2qn21 ,qn
Gk•••2qn

3~Ek•••2vqn
!hk•••2qn

† aq
†
•••aqn

†
1•••G u0&, ~3!

where Zk is the quasiparticle residue, Gk(v) is an exact
single-hole Green’s function, and Ek is the hole energy.
Since h̃ k

†u0& is an exact eigenfunction of the Hamiltonian
~2!, so the one-hole subspace of the Hamiltonian ~2! is com-
pletely diagonalized, and the effective Hamiltonian for qua-
siparticles ~3! has the form

Heff
SCBA

52J(
q

vqaq
†aq1(

k
Ekh̃ k

†u0&^0u h̃ k1H int
h2h

1••• ,

~4!

thus, the initially strong interaction is transformed exactly to
the ‘‘dressing’’ of the bare hole, and to an effective interac-
tion between such quasiparticles. Unfortunately, one cannot
use Eq. ~3! as the definition of the new Fermi operator h̃ k

† ,
and then obtain the hole-hole interaction H int

h-h by the averag-
ing H t-J @Eq. ~2!# over the two-hole wave function

h̃ k
† h̃ k8

† u0&, because h̃ k , h̃ k
† defined in this way, do not obey

the usual anticommutation relations. In other words, to know
H int

h-h one has to define the unitary operator, which corre-
sponds to the transformation of the ‘‘bare’’ hole wave func-

tion hk
†u0& to the ‘‘dressed’’ one h̃ k

†u0&. This problem is very
complicated.

Briefly, we present an approximate solution of the diago-
nalization problem of the initial Hamiltonian ~2!. An effec-
tive Hamiltonian is formulated for the ‘‘dressed’’ holes,
which have the energy, bandwidth, and structure very close
to SCBA ones. Our advantage is that we have an explicit
expression for the hole-hole interaction. Then, the solving of
the two-hole problem is straightforward.

Our described procedure is valid for the region
0,(t/J),5, and we consider this region as the actual one,
since considering the t/J model as a result of the simple
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Hubbard or many-band Hubbard model mapping, the t/J pa-
rameter has the lower boundary t/J;1, below that the map-
ping procedure is not valid. Moreover, t/J55 corresponds to
U/t520, which is well above that realized in the real com-
pounds.

The paper is organized as follows. In Sec. II, we give a
comparison of the lattice polaron problem with the spin-
polaron one and write the general form of the transformed
t-J Hamiltonian. In Secs. III and IV, we apply the proposed
procedure to the Ising case as well as to the general case.
Section V is devoted to the two-hole problem. Finally, Sec-
tion VI states our conclusions. Technical details are available
from the authors.51

II. CANONICAL TRANSFORMATION

From the formal point of view, the spin-polaron Hamil-
tonian ~2! has a form that is very similar to one of the usual
lattice polaron problem. We consider here the lattice polaron
problem to compare these two models in detail, and to estab-
lish similarities and differences.

The Fröhlich Hamiltonian is

H5(
k

Ekck
†ck1(

q
Vqbq

†bq1(
k,q

gqVqck2q
† ck~bq

†
1b2q!,

~5!

where c†(c) and b†(b) are the electron and phonon opera-
tors, Ek and Vq are their energies, respectively. gqVq is the
electron-phonon coupling. Diagonalization of the Hamil-
tonian ~5! can be done using the Lang-Firsov ~LF!
transformation:47

Heff5e2SHeS
5H1@H ,S#1

1

2!
@@H ,S#S#1••• ,

with

S52(
k,q

gqck2q
† ck~bq

†
2b2q!. ~6!

In the limit of the ‘‘static’’ electron (Ek5E0) only the first
two commutators in Eq. ~6! are not equal to zero. One can
easily obtain the effective Hamiltonian for the ‘‘dressed’’
electrons

Heff5S E02(
q

Vqugqu
2D(

k
ck

†ck1(
q

Vqbq
†bq

2 (
k,k8,q

Vqugqu
2ck2q

† ck81q
† ck8

ck . ~7!

Thus, the electron-phonon interaction term in Eq. ~5! results
in the lowering of the electron energy ~polaronic shift! and
the direct n i

en j
e interaction. For the mobile electron an infinite

series of terms in Eq. ~6! may be summed and yields an
effective hopping term describing the collective hopping pro-
cess of a bare electron with a cloud of phonons. It was shown
that the strong ‘‘dressing’’ leads to the exponentially narrow
effective band.47 The remaining part of the interaction with
the phonons ~multiple phonon processes! can be considered
as the perturbation. The underlying physical idea of the LF
approach is that the presence of an electron at the lattice site

leads to change of the equilibrium position of the surround-
ing ions and that the new eigenfunction of phonons is a
coherent state.

There are two main differences between phonon and mag-
netic polaron problems. The first one is the absence of the
‘‘bare’’ dispersion in the Hamiltonian ~2!, i.e., its hopping
term is the hole-magnon vertex.27 The second one is the
nonlocal character of the hole-spin interaction, i.e., emission
~absorption! of a magnon can be done only by hopping. Be-
cause of this there is no ‘‘static’’ limit of the problem even if
t!J , and the evident a priori ideas about the structure of
spin cloud around the hole are absent.

Nevertheless, the existing knowledge about the hole mo-
tion in an AF background can help one to succeed in trans-
forming the t-J model to an effective one, which is much
more appropriate to study. First, in the Ising background the
ground state of the hole is a localized magnetic polaron,
which is formed by a self-retraceable motion of the hole. For
a Néel background there is the similar situation, i.e., spin
waves in the virtual spin cloud around the hole are absorbed
exactly in the reversed order that they were emitted. The
contribution of the processes beyond these retraceable paths
~or SCBA! approximation was found to be very small. Sec-
ond, it was argued in a number of works that the hole
‘‘dressing’’ by the single spin wave provides results for the
hole dispersion law, which are close to the exact ones.17,18

Namely, the bottom of the band, band minima locations, and
width of the band were determined with a sufficient accuracy
in the framework of this approximation.17 Therefore, this
shows that the main contribution to the polaron well forma-
tion for the actual range of (t/J),5 is made by the ‘‘one-
string’’ component of the hole wave function ~3!. The au-
thors of some SCBA works also successfully used this
approximation for the different t-J model studies.48,49 These
are the reasons to hope that the relatively simple transforma-
tion, in the spirit of Lang-Firsov, can be used to obtain an
effective model which accounts for the main polaron effect
~of the order of t) in the hole energy and hole-hole interac-
tion, whereas the other included terms allow one to apply
perturbation theory.

We propose the general form of the generator of such a
transformation:

S5(
k,q

mk,q~hk2q
† hkaq

†
2H.c.!, ~8!

where mk,q is the parameter of the transformation. It is natu-
ral to require that mk,q should obey the same symmetry prop-
erties as the kinematic factor M k,q of the t term in the Hamil-
tonian ~2!. Note that M k,q is odd with respect to the
transformations M k,q52M k1Q,q52M k,q1Q , here
Q5(p ,p). So, without loss of generality one can rewrite
mk,q5 f k,qM k,q , where f k,q is even under mentioned symme-
try transformations.

The transformed Hamiltonian ~2! can be developed in the
usual commutator expansion50

Heff5e2SHeS
5H1@H ,S#1

1

2!
@@H ,S#S#1••• . ~9!

Using the generator given by Eq. ~8! one can get
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Heff.(
k

Ekhk
†hk12J(

q
vqaq

†aq1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8

hk1t(
k,q

Fk,qM k,q~hk2q
† hkaq

†
1H.c.!

1t (
k,q,q8

V1
haa~k,q,q8!~hk2q2q8

† hkaq
†aq8

†
1H.c.!1t (

k,q,q8

V2
haa~k,q,q8!hk2q1q8

† hkaq
†aq8

, ~10!

where we omit the terms, which are irrelevant for the one- and two-hole problems. General expressions for the hole energy
Ek , hole-magnon form factor Fk,q ~up to the sixth order of the transformation!, hole-hole vertex Vk,k8,q

hh
~up to the fourth

order!, and the other vertices are presented in the full version of the paper.51 The order of the transformation is equal to the
number of the commutators in the expansion series ~9!.

There is the freedom in choosing of the transformation parameter ~TP! f k,q . The systematic way of treating the problem is
to do all calculations with the TP as a free parameter and then fix it using some physical reasons. In this paper we use the
following procedure, which allows us to avoid the self-consistency in equations. We neglect the q dependence in the TP
( f k,q⇒ f k), and then determine f k by minimizing the hole energy. The other thinkable condition for fixing the TP can be the
equation for the hole-magnon form factor Fk,q50. Indeed, we investigated the different forms of the TP and found no
significant changes in results. We will discuss the details of our approach in the next two sections. Here we claim that for the
rather general form of the TP one can restrict oneself by the first four terms in the transformed Hamiltonian ~10!, namely

Heff.(
k

Ekhk
†hk12J(

q
vqaq

†aq1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8

hk1t(
k,q

Fk,qM k,q~hk2q
† hkaq

†
1H.c.! ~11!

keeping in mind that the transformed ‘‘internal’’ interactions @DH term in Eq. ~2!# are included in Vk,k8,q
hh . Moreover, the

resulting effective hole-magnon vertex is perturbative, i.e., the second-order correction to the energy from the self-energy
diagram is small. The importance of the effective hole-magnon vertex for the two-hole problem will be discussed in Sec. V.

III. ISING LIMIT

Let us start the general consideration of our approach from the Ising case. As was noted in Ref. 52, treating the t-J model
in the Ising limit within the linear spin-wave approximation leaves the physics of the problem essentially unchanged. More-
over, it was shown52 that the spin-wave formalism provides exactly the same result as one of the SCBA.

The t and J terms of the general spin-hole Hamiltonian ~2! using the momentum independence of vq in the Ising limit are
(vq5uq51 and vq50):

H5t(
k,q

M k,q
I ~hk2q

† hkaq
†
1H.c.!12J(

q
aq

†aq ~12!

with

M k,q
I

54gk2q .

The additional terms of the interaction Hamiltonian (DH) can be considered independently.
Following the analogy with the LF transformation we turn to the effective Hamiltonian with the help of the transformation

~9! using

S5 f(
k,q

M k,q
I ~hk2q

† hkaq
†
2H.c.!, ~13!

where generator of the transformation reproduces the kinematic structure of the hopping Hamiltonian and involves the single
free parameter f . It is natural for the TP f to be k independent in this case, since the energy of the hole in the Ising background
does not depend on k. Using the evident relation @HJ ,S#5 f (2J/t)H t one can get the effective Hamiltonian

Heff.Eh(
k

hk
†hk12J(

q
aq

†aq1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8

hk1tF(
k,q

M k,q
I ~hk2q

† hkaq
†
1H.c.!1t (

k,q,q8

Vk,q,q8

haa hk2q1q8

† hkaq
†aq8

~14!

with one-hole energy, hole-magnon form factor, hole-hole vertex, and hole-two magnon vertex given by

Eh58tF f 2

4

3
f 3

1

2J

t S 1

2
f 2

2

1

3
f 4D G ,

F5124 f 2
1

2J

t S f 2

4

3
f 3D , ~15!
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Vk,k8,q
hh

5~M k,q
I M k81q,q

I
1M k2q,2q

I M k8,2q
I

!• f F11

J

t
f 2

4

3
f 2S 11

J

2t
f D ~41gk1k8

!G
2~M k,q

I M k2q,2q
I

1M k81q,q
I M k8,2q

I
!•

8

3
f 3S 11

J

2t
f D , ~16!

up to the fourth order of transformation. The first peculiar
feature of the Ising case is that the minimization of the en-
ergy provides an equation in f :

dEh

d f
;124 f 2

1~2J/t !S f 2

4

3
f 3D50, ~17!

which coincides exactly with the equation for the hole-
magnon form factor F50. This is closely connected to the
facts that the each act of emission or absorption of the mag-
non is due to the hole hopping, and that the polaron is cre-
ated by the self-retraceable motion of the hole. The role of
the so-called Trugman processes15 among the other fifth-
order contributions was found negligibly small. The next
simplifying fact is the absence of the two-magnon vertices
with the h†ha†a† (aa) terms in Heff ~14!. This means that
there are no contributions of the hole-two-magnon interac-
tion ~14! into the self-energy and to the hole-hole vertex.
Hence, the h†ha†a term can be omitted. Thus, after the en-
ergy minimization the effective quasiparticle Hamiltonian
has the form, which is very similar to the lattice polaron one,

Heff5Eh(
k

hk
†hk12J(

q
aq

†aq

1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8

hk , ~18!

here the energy and hole-hole vertex are given by Eq. ~15!
with f obtained from Eq. ~17!.

Equation ~17! shows that

f 52

t

2J
, t/J!1,

f 2.2

1

z S 12

2J

Azt
D , t/J@1 ~19!

demonstrating the perturbative nature of our approach. The
perturbative parameter is t/J for small t/J and 1/z for large
t/J .

An exact result for the energy of the hole in the Ising
background was obtained in Ref. 52 in the form of the dif-
ference equation. Also, there is an analytical solution of this
equation in the t/J@1 limit first proposed by Bulaevskii,
Nagaev, and Khomskii:2

E522Azt 22J12.34~2J !2/3~Azt !1/3. ~20!

Figure 1 presents the numerical solution of the exact
equation52 ~bold solid curve! and approximate solution ~20!
~dashed curve! together with our results Eq. ~15!. Upper and
lower curves correspond to the calculations performed up to

the fourth and sixth orders of the transformation, respec-
tively. This figure demonstrates that our single-hole energy is
very close to an exact one.

We also have found a close agreement between the
weights of the components of an exact wave function52 and
ones of our ‘‘dressed’’ hole h̃ †u0&5e2Sh†u0&.

IV. NÉEL CASE

According to the above discussion ~Sec. II! we transform
the initial Hamiltonian H5H t2J ~2! to an effective one
Heff ~10! using

S5(
k,q

f kM k,q~hk2q
† hkaq

†
2H.c.!. ~21!

The general form of He f f is given by Eq. ~10!.
At the next step we use the same kind of variational prin-

ciple to fix the TP f k . The technical advantage of the chosen
form of the TP is that the k- and q-dependent parts in the
integrals are separable and the integrals can be reduced to
several functions.

Minimization of the energy by variation over the TP f k ,

d

d f k
S (

k8

Ek8D 50, ~22!

FIG. 1. Single-hole energy for the Ising limit. The bold solid
curve is an exact result in the spin-wave approximation. The dashed
curve is an exact result for the large t@J limit. The solid curves ~1!

and ~2! are the canonical transformation results up to the fourth and
sixth orders of transformation, respectively.
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gives an integral equation in f k . We use the following
method to solve such an integral equation ~22!. Using the
symmetry properties of the TP f k one can see that
f k5 f 2k5 f k1(p ,p)5 f (kx↔ky), and hence, f k can be ex-
pressed as a power series in cos(kx)

2, cos(ky)
2, and

cos(kx)cos(ky), or more conveniently

f k5 (
n>m

`

Cn ,mgk
2~n2m !~gk

2!2m
5C0,01C1,0gk

2

1C1,1~gk
2!2

1••• , ~23!

where the shorthand notations are gk5@cos(kx)1cos~ky)]/2,
gk

2
5@cos(kx)2cos(ky)]/2. Then, substituting this form

of f k in expressions for the auxiliary functions one yields
an infinite number of integrals of the type
(q@M k,q

2 gk2q
2(n2m)(gk2q

2 )2m], each of them is a finite series in
gk

2 , (gk
2)2 of the power (n12). Cutting f k and all other

series at the finite power n one obtains from Eq. ~22! a set of
(n11)(n12)/2 nonlinear algebraic equations in coefficients
C i , j (i<n). As a result, the integral equation ~22! is trans-
formed to the set of algebraic equations, which is much
easier to solve. Keeping in mind the 1/z character of the
expansion series for the hole energy (t.J), one can hope
that only a few terms are important, and the role of the
higher orders is insignificant.

We solved these systems of equations numerically for the
particular values of 0,t/J,5, and found that extension of
the series in Eqs. ~22! and ~23! from n53 (cos6, 10 equa-
tions! to n55 (cos10, 21 equations! changes results for the
parameter f k , energy, and form factor for the relative value
less than 0.5%. Note that including of the fifth- and sixth-
order terms into the expression of the energy changes the
results for approximately 10%. In all further calculations we
used the largest (n55) set of equations.

With the solution for f k of such a high accuracy in hand
one can get explicit expressions for the energy, form factor,
hole-hole, and hole-two-magnon vertices in the effective
Hamiltonian, Eq. ~10!. Evidently, the hole energy has the
shape with the minima at 6(p/2,6p/2) points and a large
effective mass along the MBZ boundary, and also obeys the
symmetry property Ek5Ek1(p ,p) .

The next step of our consideration is to prove the negli-
gible role of the hole-two-magnon vertices and the perturba-
tive character of the renormalized hole-magnon one. We
have calculated the second-order corrections to the single-
hole energy from the one-magnon and two-magnon self-
energy diagrams for the various t/J . Briefly, a correction to
the depth of the band from the rest of the hole-magnon ver-
tex is less than 10%, while a correction from the hole-two-
magnon vertex ~10! is of the next order of smallness.
Namely, for t/J53, E (p/2,p/2)522.22t , dE (1)

520.15t , and
dE (2)

520.02t . The relative correction to the effective hole-
hole vertex Vk,k8,q

hh from the hole-two-magnon exchange is
even smaller. Single-magnon exchange is also negligible for
the large transfer momentum (uqu;p), but it is very impor-
tant for the small one. Indeed, it has a ‘‘quasisingular’’ form
at the small transfer momentum ;t(qx1qy)2/q2, whereas
Vk,k8,q

hh is small at uqu→0. Note also that the two-magnon
exchange cannot provide the singular interaction anywhere.

Therefore, based on this argument we claim that the role
of the higher-order magnon vertices is negligible, and the
rather general type of transformation leads to a transfer of the
initially strong hole-magnon interaction ~2! mainly to the
hole ‘‘dressing’’ and to the hole-hole interaction. Thus, for a
wide region of t/J with the high level of accuracy, one can
restrict oneself by consideration of the effective Hamiltonian
~11!

Heff5(
k

Ekhk
†hk12J(

q
vqaq

†aq

1t(
k,q

Fk,qM k,q~hk2q
† hkaq

†
1H.c.!

1t (
k,k8,q

Vk,k8,q
hh hk2q

† hk81q
† hk8

hk , ~24!

with all quantities defined as expressed through
mk,q5 f kM k,q , where f k is defined from the integral equation
~22!.

The physical implication of the transformations ~9! and
~21! becomes clear if one considers the wave function of the
‘‘dressed’’ hole. One can see from Eq. ~21! that since the
hole-magnon vertex M k,q→0 at q→0, the admixture of the
long-range magnons in the polaron wave function should be
small. Thus, the transformation ~21! corresponds to taking
into account the short-range spin-wave ‘‘dressing’’ of the
hole. Following this statement one can conclude that it
should be a strong q dependence of the form factor Fk,q ~24!.
In agreement with this expectation we found that Fk,q tends
to zero at large uqu;p and varies from 0.2 to 0.4 at
uqu!p for t/J.1. The next thing, which is connected with
the type of transformation, is the separation of the scales in
the momentum space for the effective hole-hole interaction.
The ‘‘contact’’ interaction Vk,k8,q

hh tends to zero at q→0,
whereas the one-magnon-exchange interaction has the peak
structure near q50. We focus on the long-range part of the
interaction because, as was found earlier,36 it is the key part
of the pairing interaction for the dx22y2 two-hole bound
state.

Figures 2 and 3 represent our results for the bottom and
width of the single-hole band together with ones of the
SCBA calculations from Refs. 20 and 49. The small gap
between the bottoms in Fig. 2 is obviously due to the ab-
sence of the long-range magnon contribution in our quasipar-
ticle.

After an exhaustive investigation we are certain that the
wave function that results from the canonical transformation
introduced in this paper is similar to those of other analytical
studies, e.g., the SCBA, that numerical work,53,26 has shown
to be accurate. Thus, from now on we focus on the more
interesting and complicated problem of two holes.

V. TWO-HOLE PROBLEM

A. Two-sublattice representation

Because of the AF long-range order there are two types of
fermion and boson excitations in the system associated with
two sublattices. For consideration of the one-particle sub-
space it is of no importance whether one has the model with
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two degenerate branches of excitations, or the model with
one type of them. Above we used the latter for the sake of
simplifying the notations. One can easily prove the formal
equivalence of these approaches. For the two-sublattice rep-
resentation there are two types of holes and magnons both
defined inside the first magnetic Brillouin zone, whereas for
the one-sublattice representations holes and magnons are de-
fined inside the full Brillouin zone.

For the calculation of the correlation function,49 consider-
ation of the hole-hole interaction,54 or some other calcula-
tions in the two-hole subspace one should turn to the two-
sublattice representation. It is convenient to do it using the
following expressions for the operators hk and aq :

hk5~ f k1gk!/A2, hk1~p ,p !5~ f k2gk!/A2, ~25!

aq5~aq1bq!/A2, aq1~p ,p !5~aq2bq!/A2,

where f k and gk correspond to the fermionic excitations at
the A and B sublattices, respectively. aq and bq are the two
types of Bogolubov spin-wave excitations. Transition to the
new variables for the hole-magnon part of the effective
Hamiltonian ~24! is straightforward if one uses the odd parity
of the vertex M k,q with respect to the transformation
k→k1(p ,p):

Heff
ha

⇒t(
k,q

Fk,qM k,q~ f k2q
† gkbq

†
1gk2q

† f kaq
†
1H.c.!,

~26!

where the summation is performed over the MBZ.
Expressing the hh-interaction ~24! in the terms of new

variables one has

Heff
hh

⇒H f g
1H f f

1Hgg
5t (

k,k8,q
Vk,k8,q

f g f k2q
† gk81q

† gk8
f k

1t (
k,k8,q

@Vk,k8,q
f f f k2q

† f k81q
† f k8

f k

1~ f→g !# . ~27!

Thus, there are three different parts in the Heff
hh , which cor-

respond to the interaction between the holes at the different
sublattices ( f g part! and at the same one ( f f and gg parts!.
The first contribution to the latter arises in the third order of
the transformation and physically corresponds to the process
shown in Fig. 4~a!. Generally, the f f ~or gg) interaction does
not have some important features of the f g one. Namely,
there are no singularities in its long-range part, and the ef-
fective attraction due to reducing of the number of broken
AF bonds is absent for the particles at the same sublattice as
well. These physical reasons were checked earlier43 and it
was found that there are no bound states formed by the par-
ticles at the same sublattice in the region of (t/J).1. So, we
will concern ourselves with the interaction of the particles at
the different sublattices.

To derive the f g interaction from the hh one, an accurate
consideration of the parity of the hh vertex Vk,k8,q

hh with re-
spect to the transformation R5k(k8)→k(k8)1(p ,p) is re-
quired. There are two contributions of the different parity
(R57) in the effective f g interaction. Their diagrammatic
analogues are presented in Figs. 4~b! and 4~c!, respectively.
Since the first contribution is due to the one-magnon ex-
change, by its origin it is of the ‘‘exchange’’ type (Vex

hh). The
second one is due to the two-magnon exchange and the con-
tact interactions ~additions from the DH term!, so it is of the
‘‘direct’’ type (Vdir

hh). Obviously, these contributions enter in
the f g vertex with the opposite signs

Vk,k8,q
f g

5@2Vex
hh~k,k8,q!2Vex

hh~k8,k,2q!1Vdir
hh~k,k8,q!

1Vdir
hh~k8,k,2q!# . ~28!

Note here that the first nonzero correction beyond the lad-
der approximation for the hole-hole ( f g) scattering arises

FIG. 2. Bottom of the hole band. The Solid curve is our result
~sixth order of the transformation!, the dashed curve is the SCBA
result.

FIG. 3. Width of the hole band. The solid curve is our result
~sixth order of the transformation!, the dashed curve is the SCBA
result.
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only in the sixth order over t @see Fig. 4~d!#. Moreover,
structure of this correction resembles one of the Trugman-
type diagrams for the single-hole self-energy. Therefore,
keeping in mind the negligible role of the non-SCBA contri-
butions to the hole energy, one can hope that the diagram in
Fig. 4~d! can be omitted in all calculations. This leads to the
conclusion that the ladder approximation should work well
even for the initial ~untransformed! t-J model ~2!. In our
calculations we use the same approximation, but for already
‘‘dressed’’ quasiparticles and renormalized interactions.

B. Types of pairing interaction

Generally, there are two different types of hole-hole inter-
actions in the t-J model. The first one is the spin-wave ex-
change and the second one is due to minimization of the
number of broken AF bonds by the holes located at the near-
est neighbor sites. We consider them separately.

The second type of interaction is usually introduced in the
pure t-J model by adding projectors P i5(12n i

h) in the J
term ~1!:

HJ5J(
^i , j&

F ~12n i
h!SiSj~12n j

h!2

1

4
n i

hn j
hG , ~29!

which project out the subspace of the local spins at the sites
with the holes, n i

h
5h i

†h i is the operator of the hole number.
This procedure is necessary because the spinless fermion op-
erators, unlike the constrained fermion ones, commute with
the spin operators and hence, unphysical states of the spin
and spinless fermion at the same site should be projected out.
It is evident that due to the h i

†(h i) and Si operators the com-
mutativity projection procedure is exact, i.e., there is no spin-
spin interaction between the sites with the holes. Thus, the
additional part of the t-J Hamiltonian ~2! can be written as

DH5J(
^i , j&

F2~n i
h
1n j

h!SiSj1n i
hn j

hSiSj2
1

4
n i

hn j
hG ,

~30!

where summation runs over bonds. Treating this term in the
spin-wave approximation yields

DH522J~122dl ! (
k,k8,q

gqf k2q
† gk81q

† gk8
f k1dHJ ,

~31!

where the term dHJ consists of the two-magnon terms
nhaa and nhnhaa .51 The hole attraction ~31! is enhanced by
zero-point fluctuations (22dl.0.16). Applying transfor-
mation ~21! to the Hamiltonian ~31! one can get the addi-
tional part of the effective Hamiltonian

dH f g
5J (

k,k8,q
dVk,k8,q

f g f k2q
† gk81q

† gk8
f k . ~32!

An explicit expression of the ‘‘dressed’’ vertex dVk,k8,q
f g is

cumbersome.
There is an evident result for the n in j interaction in the

t50 limit. Namely, the ground state of the two holes is the
bound state with the energy Eb5(122dl)J/2.20.58J .
The states of s @coskx1cosky#, d @coskx2cosky#, and
p @sinkx , sinky# symmetries are degenerate in this limit. The
nn-type of interaction ~31! has been intensively studied by a
number of analytical,42,43 and numerical techniques.40 It was
established that the increase of t leads to the gradual growth
of Eb and disappearance of the bound states at some critical
tc . The largest critical value tc5(225)J , which is close to
the values of t proposed for the real CuO 2 planes, was found
for the bound state of the d symmetry. There are two mecha-
nisms of reducing the nn attraction. The first mechanism is
due to the decrease of the ‘‘bare’’ hole part in the magnetic
polaron. The second one is from the loss of the kinetic en-
ergy due to the close location of the holes.

Considered pairing interaction has nothing to do with the
spin-fluctuation one, which has been investigated in Ref. 55
on the phenomenological basis and in Ref. 30 using the RPA
for the Hubbard model. An essential contribution to the
studying of the spin-wave exchange interaction in the t-J and
Hubbard models has been done in Refs. 32 and 35, where
authors found that the exchange by the long-range ~small
momentum transfer! spin wave leads to the dipolar interac-
tion between holes which can be attractive or repulsive de-
pending on the relative location of them. In the later work by

FIG. 4. Schematic view of the scattering diagrams: ~a!

f f→ f f , ~b! f g→g f , exchange type, ~c! f g→ f g , direct type, ~d! the
first diagram of the f g→ f g scattering beyond the ladder approxi-
mation. Here the wavy lines denote the interaction originated from
the magnon exchange (t term!. The point in the diagram ~c! denotes
the nearest neighbor attraction vertex (J term!.
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Kuchiev and Sushkov36 this problem has been independently
studied in great detail and several interesting features of the
system have been found. First of all, neglecting the retarda-
tion effect and the finite size of the Brillouin zone one can
obtain the Schrödinger equation for the two-hole problem
with an effective potential ;(x2

2y2)/r4, which can lead to
the ‘‘fall to the center’’ effect and to the infinite number of
bound states. It has been also found that the actual deepness
of the bound states is very sensitive to the curvature of the
hole band along the MBZ boundary.36 This effect was ex-
plained by the strengthening of the pairing interaction due to
the effective lowering of the dimensionality of the system. In
Ref. 36 only d and g @(coskx2cosky)sinkxsinky# states were
found to exist. This confirms the general statement56 that in
the AF state one-magnon exchange leads to repulsion of the
carriers in the s-wave state and to attraction in the d-wave
one.

C. Bethe-Salpeter equation

Thus, one has the Hamiltonian ~24! with the hole-magnon
~26! and ‘‘contact’’ hole-hole ~28! and ~32! interactions. As
it was noted, the correct account of the retardation effect in
the spin-wave exchange diagram is important, so let us con-
sider this problem first. Since we turned to the effective
Hamiltonian using a canonical transformation ~21!, the short-
range spin-wave exchange @Fig. 4~b!# is included in the
‘‘contact’’ interaction, which does not contain the retarda-
tion.

The systematic procedure for searching the bound states is
to look for the poles of the two-particle Green’s function in
the scattering channel considering it as a function of the total
energy of the particles in the center of inertia system.57 The
corresponding integral equation for the two-hole Green’s
function for the holes with the total momentum P50 is pre-
sented in Fig. 5 in diagrammatic form. The standard way of
solving this equation with the nonretarded ‘‘compact’’ vertex
G0 is given in the Appendix.

In our case the ‘‘compact’’ vertex G0 consists of two parts
~see Fig. 6! and one has to include the magnon propagator
into the expression for the long-range spin-wave exchange
part. A natural assumption that the two-particle Green’s
function has no singularities as the function of the difference
of the energies of incoming particles provides a somewhat

different way of solving the Bethe-Salpeter problem. Details
are also given in the Appendix.

The resulting equation of the Bethe-Salpeter type for the
problem with two vertices ~Fig. 6! is given by

c~k,E !5

1

E22Ek
(

p
F 22Vk,qVp,q

E2Ep2Ek2vq
1tVk,2k,q

f g

1JdVk,2k,q
f g Gc~p,E !, ~33!

where q5k1p (q5k2p) for the exchange ~direct! parts of
interactions ~27! and ~32!, Vk,q5tFk,qM k,q .

D. Results

Finally, having in hand vertices ~26!, ~28!, ~32!, and Eq.
~33! one can hope to obtain reliable results for the bound
states in the t-J model. Moreover, since we have considered
the interactions of different natures independently one can
demonstrate the role of each type of interaction in the for-
mation of the bound states.

Briefly, our results are as follows. The bound state of the
d symmetry (dx22y2) exists in the region 0,(t/J),5. The
states of the other symmetries (s , p) were not found at
(t/J)>0.2. The main thesis of this work is that the interplay
of interactions which tend to d-wave pairing, namely the
short-range J interaction ~32! and the long-range spin-wave
exchange ~26!, is important for the formation of the
d-wave bound state.

Specifically, there are no bound states from the J term
alone @the third term in Eq. ~33!# for (t/J).2.1. The spin-
wave exchange @the first and second terms in Eq. ~33!# pro-
vide a rather shallow bound state. Nevertheless, putting these
interactions together one obtains a much deeper bound state
than from the pure spin-wave exchange.

As was noted above in the limit t50, the bound states of
d , s , and p symmetry have the same energy. We have found
that the s and p states disappear at (t/J).0.2.

Considering terms in the equation for the bound state en-

FIG. 5. Graphical identity for an exact vertex

G̃(k f ,2kg ,k f8 ,2kg8) for the f g scattering in the
ladder approximation. The solid circle denotes

G̃(k f ,2kg ,k f8 ,2kg8), the empty circle denotes a
‘‘compact’’ vertex G0(k f ,2kg ,k f8 ,2kg8).

FIG. 6. Structure of the ‘‘compact’’ vertex
G0(k f ,2kg ,k f8 ,2kg8) ~empty circle!. Here, the
wavy line denotes the long-range spin-wave ex-
change ~26!, and the point denotes all vertices,
which do not contain the retardation ~28! and
~32!.
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ergy ~33! separately and together, we have obtained results
for the d-wave pairing state shown in Fig. 7. The dashed
curve corresponds to taking into account the J term of inter-
action dVk,2k,q

f g ~32! alone. The obtained critical value of
tc52.1J for disappearing this short-range-in-nature state is
in excellent agreement with the variational approach,42

finite-cluster calculations,28,40 and other approaches.43 The
dash-dotted curve corresponds to the long-range bound state
due to the first two terms in Eq. ~33!. According to Ref. 36
this state should have a small negative energy.

The actual value of the binding energy was found very
sensitive to the curvature of the hole band along the MBZ
boundary. As was noted in Ref. 36, the higher anisotropy
leads to the more one-dimensional character of the spin po-
larons. The latter leads to the effective enhancement of the
interaction. This feature of the problem is very close to the
earlier idea by Schrieffer et al.30 about the effective attrac-
tion of the ‘‘cigarlike’’ ~one-dimensional! spin polarons.
More generally, an attractive interaction itself does not im-
mediately result in the bound state. One has to prove that the
energy gain due to the pairing is larger than the energy loss
due to the localization, or, in other words, to solve the Bethe-
Salpeter equation. Hence, the less kinetic energy associated
with the hole movement, the deeper bound state one can get.

We have found that the actual value of the mass ~SCBA!
along the MBZ boundary leads to very small binding energy
;1023

21024t for the long-range state. Actually, the bound
state is almost pushed in the continuous spectra. The solid
curve is our final result for the energy of the d-wave bound
state in the t-J model. The bound state energy for (t/J)53 is
equal to DE5E22Ek0

520.022t , which is two orders of
magnitude deeper than was obtained earlier.36 Thus we have

obtained a strong enhancement of the coupling effect by the
interplay of the two types of pairing interactions.

Note that the ‘‘contact’’ part of the spin-wave exchange
interaction Vk,k8,q

f g
~28! plays the minor role in such a strong

effect. Namely, ignoring it in Eq. ~33! one yields the energy
20.01t (t/J53), which is only two times smaller than the
result of the integral effect.

It is useful to consider the structure of the wave functions
of the two-hole bound states in k space. Figure 8~a! shows
the wave function for (t/J)51. It is simply a short-range
wave function from the ‘‘bare’’ J term ck;(coskx2cosky)
with the small addition of the higher harmonics. Figures
8~b!–8~d! show the wave functions for the ~b! long-range
state, ~c! short-range one, and ~d! resulting wave function, all
for (t/J)52. The long-range bound state @Fig. 8~b!# is well
localized near the band minima that is consistent with its
large-r character. The short-range state @Fig. 8~c!# is more
complex than one in Fig. 8~a! because its energy is smaller
and the corresponding momentum space distribution in-
volves more harmonics. The resulting wave function @Fig.
8~d!# reveals the features of the previous states.

The next problem is the influence of the next-nearest hop-
ping terms (t8 terms! on the bound states. Evidently, the
small t8 leads to the perturbative addition to the hole disper-
sion dEk54t8cos(kx)cos(ky) which can change the physics of
the system.58,59 A positive value of t8 makes the band more
flat in the (p/2,p/2)→(p ,0) direction. According to the
above discussion it strongly enhances the interactions and
makes the d-wave bound state much deeper. For instance, for
the flat band (m i5`) energy of the bound state is
E520.165t @(t/J)53#. Note that the neglecting of the
short-range interaction provides the result E520.043t . For
some region of t8.0 existence of the long-range bound state
of the g symmetry becomes possible. The g-state wave func-
tion obeys the symmetry of the product
@(coskx2cosky)sinkxsinky#, i.e., changes the sign in MBZ
eight times. Because of the absence of the short-range attrac-
tion for such a state the energy associated with it is very
small.

It is well established by now that, for the real CuO 2 com-
pounds, t8 has the negative sign and the t8 terms result in the
fully isotropic dispersion near the band minima.60,61 Note
that the change of the quasiparticle spectrum is the main
effect from t8 terms, so one can neglect their contribution to
the effective interactions. Adding this statement to the sensi-
tivity of the bound state to the anisotropy of the hole band
one can suggest that there are no bound states in the t-t8-J
models of the CuO 2 plane for the realistic parameters. We
have studied the problem of the critical value of t8 and found
tc8.0.3J for (t/J)53, which is much lower than the realistic
value teff8 ;1.5J .

Turning back to the simple t-J model, one can say that the
direct relation of the studied bound states to the t-J super-
conductivity is questionable, since we used the existence of
the long-range AF order as the basis of the model ~2!,
whereas the long-range order is unstable under very small
hole doping. Therefore, to clear this subject one has to solve
the problems of the pairing and stable spin state self-
consistently.

FIG. 7. Results for the energy of the d-wave pairing state. The
dashed curve corresponds to the short-range bound state, the dash-
dotted curve corresponds to the long-range one, and the solid curve
corresponds to the resulting bound state.
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VI. CONCLUSION

We conclude by summarizing our results. We have put
forward a canonical transformation of the t-J Hamiltonian
using an analogy with the lattice polaron problem and some
ideas based on the known properties of the hole in the AF
background. We have shown that the rather simple transfor-
mation, which has some kind of 1/z expansion in the basis,
allows one to extend the region of the analytical treatment of
the problem up to t/J;5 with appropriate accuracy. Gener-
ally, the powerful method applied provided us the straight
way to the formulation of the quasiparticle Hamiltonian,
which includes the free energy terms for the holes and mag-
nons and all essential interactions.

Results for the single-hole bottom of the band, bandwidth,
and other properties have been compared with ones of the
SCBA calculations and remarkable agreement has been
found. The idea that the ‘‘canonically transformed’’ quasi-
particles have the properties which are close to ones of exact
t-J model quasiparticles is supported.

Using the obtained Hamiltonian we have performed a
study of the two-hole problem. The hole-hole interactions of
different natures have been considered separately, and then
together. Rather deep bound states of d-wave symmetry
originating from the interplay of the two types of the pairing
interactions have been found. The retardation effect for the

long-range spin-wave exchange has been carefully taken into
account. Other possible symmetries of the bound state wave
function have been studied as well. The main effect of the
so-called t8 terms has been investigated and the critical value
of tc8 , at which the bound state disappears, has been found.

Since we have used the presence of the AF long-range
order as a foundation of setting up the problem, the direct
relation of the considered two-hole problem to the case of
finite hole doping of the real CuO 2 plane is unclear. We have
briefly discussed the possible way of this relation and
touched on questions which remain to be resolved.
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APPENDIX

For two holes with the total momentum P50 one can
write the following integral equation:

FIG. 8. Wave functions of the two-hole bound
states: ~a! (t/J)51, ~b! (t/J)52, long-range
state ~c! (t/J)52, short-range one, ~d! (t/J)52,
wave function of the resulting bound state.
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G̃~k f ,2kg ,k f8 ,2kg8!5G0~k f ,2kg ,k f8 ,2kg8!1(
p f

G0~k f ,2kg ,p f ,2pg!G~p f !G~2pg!G̃~p f ,2pg ,k f8 ,2kg8!, ~A1!

where we introduced four-momentum notations k f5(k,e f), 2kg5(2k,eg), p f5(p,e f9), 2pg5(2k,eg9) with momenta k,p
and frequencies e f (g) , e f (g)9 . G(p)51/(e2Ek1id) is the single-hole Green’s function. This equation is equivalent to the

graphic equality shown in Fig. 5. Near the pole G0
!G̃ and hence the first term in Eq. ~A1! can be neglected. Then, one can

see that G̃ dependence on outgoing four-momenta k , k8 is the parametric one, i.e., it is not defined by equation itself. Omitting
these parameters and introducing E5e f1eg , De5(e f2eg)/2, De95(e f92eg9)/2 we have

G̃~k,E ,De !5 (
p,De9

G0~k,p,E ,De ,De9!G~p,E/21De9!G~2p,E/22De9!G̃~p,E ,De9!. ~A2!

When G0 has no frequency dependence ~‘‘static’’ interaction!,

G0~k,p,E ,De ,De9!5U~k,p!, ~A3!

it is natural to change the variable GGG̃5x and get

x~k,E ,De !5G~k,E/21De !G~2k,E/22De !(
p

U~k,p!E d~De9!x~p,E ,De9!. ~A4!

Integrating both sides over De we get the Schrödinger equation

c~k,E !5

1

E22Ek
(

p
U~k,p!c~p,E !, ~A5!

with c(k,E)5*d(De)x(k,E ,De), which has the sense of the bound state wave function.
In our case the ‘‘compact’’ vertex G0 consists of two parts ~see Fig. 6! and one has to include the magnon propagator into

the expression for the spin-wave exchange vertex

G1
0~k,p,De ,De9!52F Vk,pV

2k,2p*

e2e92vk1p1id
1

V2k,2pVk,p*

e92e2v2k2p1idG , ~A6!

where Vk,p5tFk,qM k,q , e2e95De2De9, k1p5q. The negative sign on the right side and relation q5k1p are due to the
exchange character of the diagram ~Fig. 6!. Thus, there are three De9-dependent denominators in the integral Eq. ~A2! and the
simple change of the variables is impossible.

It is natural to assume at this step that since one is looking for the poles of the two-particle Green’s function as the function
of E , G̃ has no singularities as the function of the difference of the energies of incoming particles De . Therefore, the integral
over De9 in Eq. ~A2! is determined by the poles of G(p,E/21De9), G(p,E/22De9), and G1

0(k,p,De ,De9) ~A6!. These poles
are De95(Ep2E/2)2id , De952(Ep2E/2)1id , and De956(De2vq)6id , respectively. 1 (2) in the last pole corre-
sponds to the first ~second! term in Eq. ~A6!. The integration gives

G̃~k,E ,De !5(
p

S 2

Vk,pV
2k,2p*

E22Ep
D F G̃@p,E ,~Ep2E/2!#

De2~Ep2E/2!2vq1id
1

G̃@p,E ,2~Ep2E/2!#

2De2~Ep2E/2!2vq1id
G . ~A7!

The further way is close to the usual one. Multiplying both sides of Eq. ~A7! by the external incoming Green functions one

can integrate over De , using the evident parity of G̃ in De

G̃~k,E !

E22Ek
5

1

E22Ek
(

p

22Vk,pV
2k,2p*

E2Ep2Ek2vq
3

G̃~p,E !

E22Ep
. ~A8!

Changing G̃(k,E)/(E22Ek)5c(k,E) one obtains

c~k,E !5

1

E22Ek
(

p

22Vk,pV
2k,2p*

E2Ep2Ek2vq
c~p,E !. ~A9!

Evidently, the ‘‘usual’’ Bethe-Salpeter equation ~A5! can be obtained in the same way. Surprisingly, this result ~A9! coincides
exactly with one obtained in Ref. 36 using the Rayleigh-Schrödinger perturbation theory.
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