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Abstract. A consistent theory of the ground-state energy and its splitting due to the process of
tunnelling for the Lipkin–Meshkov–Glick (LMG) model is presented. We calculate accurately
the trivial and the instanton saddle-point contributions to the functional integral for the partition
function of the model, in terms of the spin coherent states. We show that such a calculation
has to be performed very accurately taking into account the discrete nature of the functional
integral. This accurate consideration leads to the replacement of the magnitude of the spin s by
s+1/2, in the formula for the ground-state splitting obtained by a naive continuous method. We
compare the numerical calculation of the ground-state energy and the splitting due to tunnelling
with the results obtained by the quasiclassical method and obtain excellent agreement.

1. Introduction

Lipkin, Meshkov and Glick [1] proposed in 1965 an exactly solvable two-level many-
fermion model (the LMG model) which has been used to test various kinds of many-body
theories. The model Hamiltonian reads

H = ω̃Ŝ0 − 1
2f (Ŝ

2
+ + Ŝ2

−) (1)

where f is the coupling constant, ω̃ is the energy difference between the two levels,
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and � is the degree of degeneracy of each level. The single-particle states are labelled by
the quantum numbers ±m. The operators Ŝ0 and Ŝ± satisfy the commutation relations of
the su(2) algebra.

The transformation associated with the unitary operator eiπŜ0 leaves the Hamiltonian
invariant. If χ = f�/ω̃ < 1, the mean-field ground state of the model is classified according
to the trivial representation of the symmetry group. The symmetry is spontaneously broken
if χ > 1.

A splitting of the levels is then observed, which is analogous to the occurrence of
rotational bands in deformed nuclei. The model is also of great interest in condensed matter
physics, since it is related to the anisotropic Heisenberg model. In the strong coupling limit,
χ � 1, the level splitting vanishes for odd �. This behaviour is easily understood in the
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framework of Kramers theorem and is related to the well known phenomenon of tunnelling
suppression for half-integer spin anisotropic Heisenberg ferromagnets.

In this paper we give a short review of the calculations of the ground-state energy and
its splitting by the instanton method in the continuous approach. Such a method has been
applied to the anisotropic Heisenberg model for the description of the tunnelling of the
magnetic moment of small magnetic particles with large spin [2–7] and to the LMG model
[8]. Although the physical picture of the spin tunnelling was formulated in these papers the
results of the papers [3–7] are not quantitatively correct.

We show that special care is required when computing the instanton contributions in
order to also take correctly into account the small amplitude quantum fluctuations. On more
technical language the functional determinants have to be calculated very accurately taking
proper account of the operator ordering generating the functional integral for the partition
sum. We show that it is essential to keep in mind that the functional integral is generated
by the spin coherent state method. Taking accurate account of the discrete nature in time of
the functional leads to essential corrections to the ground-state energy and to its tunnelling
splitting. After taking into account all these contributions our result completely coincides
with that of [2] obtained by the semiclassical method and the contradiction existing in the
literature is resolved.

The structure of the paper is as follows. In section 2 we present the functional integral
for the LMG model. In section 3 we review the simple results for the tunnelling in the
framework of the continuous approximation for the functional integral. In section 4 we
calculate the contribution of the trivial saddle point to the partition function and determine
the ground-state energy. In section 5 we calculate accurately the functional determinant
for the instanton saddle point taking into account the corrections due to discretization. In
section 6 we present the comparison between the analytical theory and the exact numerical
results for the LMG model and find an excellent agreement when the additional contributions
discovered in this paper are taken into account.

2. Functional integral for the LMG model

It is convenient to rewrite the Hamiltonian of the model in the rotated reference frame when
the first term in (1) is absent, i.e. ω̃ = 0:

Ĥ = f (Ŝ2
z − Ŝ2

x). (3)

Here we assume that the magnitude of spin s � 1. This Hamiltonian (3) describes
schematically the interaction between nucleons when the energy of splitting, regarded as
an external magnetic field, is omitted. The choice of the coordinate axis is determined by
the simplification of further calculations. Note that the LMG model can be reduced to the
anisotropic Heisenberg model [3]. We concentrate our attention on the accurate treatment
of the ground-state energy of the model and its splitting due to tunnelling.

In this special case the LMG model is invariant under time reflection. In the case of
half-integer spin s this symmetry leads to the twofold Kramer’s degeneracy of the ground
state [3–6]. In the case of integer spin s instead of degeneracy we have the splitting of
the ground state. This splitting has to be small because for large s the difference between
integer and half-integer spin has to be small. In fact this splitting is exponentially small.

To solve this problem we have used the instanton method [3–6, 9] applied to the
functional integral for the partition function of our spin system in terms of spin coherent
states |z〉 [10]. They possess many remarkable properties and with their help the partition
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function can be represented in the form [10]

Z = Tr[exp(−T Ĥ )]

Z =
∫ ∞

−∞
· · ·

∫ ∞

−∞

N−1
∏

n=0

(2s + 1) dzn dz∗
n

π(1 + |zn|2)2
exp(A(z)). (4)

Here the interval of the imaginary time T is split into N parts, T = N1, and in every
section an integration over z′

n = Re zn and z′′
n = Im zn is performed. The action of the

system A(z) has the form

A(z) =
N−1
∑

n=0

[2s ln(1 + z∗
n+1zn)− 2s ln(1 + |zn|2)−1H(z∗

n+1, zn)] (5)

where the variables zn satisfy the periodic boundary conditions, zN = z0 or in the continuum
limit z(T ) = z(0), and the Hamiltonian

H(z∗
n+1, zn) = 〈zn+1|Ĥ |zn〉

〈zn+1|zn〉
= s2g

2

[

1 −
6z∗
n+1zn + z2

n + z∗2
n+1

(1 + z∗
n+1zn)

2

]

(6)

where g = f (2s − 1)/s, g > 0 is the coupling constant.

3. Naive classical picture for the ground-state energy and its instanton splitting

In many cases (but not in all!) one can take the continuum limit when zn+1 is close to zn.
In this continuum limit it is convenient to introduce the canonically conjugated variables ϕ
and p = cos θ :

z = ρ exp(iϕ) ρ2 = s − p

s + p
0 6 ϕ 6 2π − s 6 p 6 s. (7)

The action of the system A(z) in the continuum limit is

A(ϕ, p) =
∫ T/2

−T/2
[i(p − s)ϕ̇ −H(p, ϕ)] dt

H(p, ϕ) = (g/2)(p2(1 + cos2 ϕ)− s2 cos2 ϕ) (8)

where H(p, ϕ) is the Hamiltonian of the problem. This Hamiltonian is peculiar because
the mass depends on the coordinate ϕ. The second essential peculiarity is the presence in
the action of the term isϕ̇ (the Berry phase) which separates integer and half-integer spins
[5, 6].

One can easily check that the Hamiltonian has two minima at the points ϕ = 0, π and
p = 0. These minima are deep for s � 1 and the Hamiltonian in the neighbourhood of the
minima has the simple form of a harmonic oscillator

H(p, ϕ) = Emin + gp2 + gs2ϕ2/2 Emin = −s2g/2 (9)

and the vibration frequency is ω =
√

2gs.
The ground-state energy and the splitting can be found [3–6] by applying the instanton

method [9] to the Hamiltonian (8). The result of summation of all saddle-point contributions
to the partition function can be presented in the following form:

Z = Z0 cosh(|A+ B|T ) (10)

where Z0 is the contribution of the trivial saddle points and A and B are two different types
of the instanton contributions excluding the determinant of the trivial saddle points.
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The dependence on the Berry phase can be easily found [4]:

A = exp(iπs)I B = exp(−iπs)I. (11)

Application of the continuous method of [9] to the Hamiltonian (8) gives the following
expression for Z0:

Z0 = 2 exp(−EminT )[det(L0)]
−1/2 = 2 exp(−(Emin + ω/2)T ) (12)

where L0 is the Schrödinger operator for the quadratic form (9), and the factor 2 is due
to the presence of two minima. For the instanton contribution I in the framework of the
continuous method we have [9]

I =
√

A0

2π
X exp(−A0) X = [det(L0)]1/2

[det(LI )′]1/2
(13)

where A0 is the instanton action, LI is the Schrödinger operator for the quadratic form
describing fluctuations around the instanton solution, the prime in the determinant LI means
that the contribution of the zero mode has to be excluded and the first factor in (13) represents
the measure of integration over the zero mode.

The ratio of determinants X can be expressed in the continuum limit through the
asymptotic behaviour for time t ⇒ ∞ of the normalized zero-mode excitation:

χ(t) = (A0g(1 + cos2 ϕt ))
−1/2ϕ̇0(t) (14)

where ϕ0(t) is the instanton solution for the action (8). We denote by p0(t) the momentum
conjugated to ϕ. We have

cosϕ0(t) = ± sinh(τ0)
√

2 + sinh2(τ0)
ip0(t) = su0

t = ± s

cosh(τ0)
(15)

where τ0 = ω(t− t0), and t0 is the centre in time of an instanton. The asymptotic behaviour
of the zero mode is of the form

lim |χ(t)| ⇒ Aτ exp(−|τ0|) Aτ = 2(2)1/4
√

sω/A0. (16)

On the basis of this solution one can prove [9] that the ratio of determinants is

X =
√

2Aτ = 27/4
√

sω/A0 (17)

and does not depend on T . Substituting the magnitude X (16) in the expression for I (13)
we obtain the expression for the partition function in the form

Z = Z0 cosh(4 × 21/4ω
√

s/π cos(πs)T e−A0). (18)

Using the expression A0 = 2s ln(1+
√

2) which follows from the action (8) for the instanton
solution (15) we obtain the energy of the ground state and its splitting in the form

E± = E0 ± δE/2 E0 = Emin + ω/2

δE = 8 × 21/4ω
√

s/π exp[−2s ln(1 +
√

2)] cos(πs). (19)

We can see that this splitting is exponentially small for large s and equals zero in the
case of half-integer spins in full agreement with Kramers theorem [5, 6]. The cancellation
of the splitting for the case of the half-integer spin takes place due to the compensation of
the contributions of the instantons of A and B type to the partition function Z.

However, unfortunately, expressions (19) for the ground state energy E0 and the
instanton splitting δE are valid only qualitatively. Quantitatively they are wrong. The
origin of the mistake is connected with the subtle nature of the functional integral which
demands accurate treatments when we calculate functional determinants. In particularly the
expressions for Z0 (12) and for X (17) are wrong.
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4. Energy of the ground state or the trivial saddle-point contribution to the partition
function

The expression E0 for the ground-state energy is wrong due to an incorrect definition of
the product of operators at the same point in terms of the variables ϕ and p. The natural
variables for the functional integral (4) are the z-variables. The trivial saddle points in terms
of these variables are z = ±1. In the neighbourhood of the saddle points we can represent
the z-variables in the form

z = ±1 +
√

2/s a z∗ = ±1 +
√

2/s a∗. (20)

The quadratic part of the action close to the saddle point is

Aq(a) =
N−1
∑

n=0

[(a∗
n+1an − a∗

nan)− αa∗
n+1an − (β/2)(a∗2

n+1 + a2
n)] (21)

where α = 3T sg/N , β = T sg/N . The quadratic form Aq(a) can be partly diagonalized if
we pass to the ω-representation for the variables an, a∗

n:

(an, a
∗
n) = N−1/2

N−1
∑

m=0

e±iωmn(am, a
∗
m) (22)

where ωm = 2π im/N . The action in the ω-representation has the form

Aq(a) =
N−1
∑

m=0

[((1 − α) exp(−iωm)− 1)a∗
mam − β(a∗

ma
∗
N−m + amaN−m)]. (23)

The Gaussian integrals with the quadratic form (23) can be easily calculated and the inverse
determinant D−1 can be obtained. The determinant D is equal to the product of the
eigenvalues λm of the quadratic form (23)

λm = α2 − β2 + 2(1 − α)(1 − cosωm). (24)

The partition function Z0 has the following expression in terms of λm:

Z0 = 2 exp(EminT )Y Y =
N−1
∏

m=0

λ−1/2
m . (25)

The quantity Y can be calculated with help of some simple tricks and in the limit N → ∞
the partition function and the ground-state energy are

Z0 = 2 exp[−E0T ][1 − exp(−ωT )]−1

E0 = Emin + (ω − ω0)/2 (26)

where ω =
√

2sg, ω0 = 3sg/2.
We can see that the result (26) differs from the continuous result E0 obtained previously

(19). From the point of view of the functional integral this difference is due to the
contribution of the large eigenvalues of the quadratic form (21) which correspond to the
large ω in the partition function (25). From the operator point of view the quadratic form
(21) expressed in terms of operators (for example with the help of the Holstein–Primakoff
representation with the quantization along x) has to be diagonalized with the help of the
Bogoluibov’s u − v transformation. As a result of such diagonalization the ground-state
energy is shifted by the amount (ω − ω0)/2.
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5. Calculation of corrections to the determinant caused by the discrete nature of the
functional integral over time

In our calculation we passed carelessly from the original variables z∗
t , zt to the natural

variables ϕt , pt . Small corrections of the order 1ω can lead to finite contributions to such
quantities as the measure of integration and det(L̂0). They are practically the same quantities
because by changing the variables of integration they can be reduced to each other. First we
describe the mechanism of such corrections on a qualitative level and after that we apply it
to our case.

Let us suppose that each variable ci in the measure has a small multiplicative correction
of the order 1ω:

dµ ⇒
N

∏

i=1

dci√
2π
(1 + αi1ω) = dµ0R

R =
N

∏

i=1

(1 + αi1ω). (27)

This factor R to dµ0 can be expressed in an exponential form and is different from unity

R = exp(δA0) δA0 =
N

∑

i=1

ln(1 + αi1ω) ' ω

∫ T

0
αt dt (28)

where δA0 is the correction to the classical action. If the function αt is asymptotically
constant for 0 6 t 6 T , then δA0 ∼ constant × ωT . If the function α is localized over
time within a region order ω−1 then δA0 ∼ constant.

If we calculate the determinant, the mechanism of influence of corrections is more
subtle. Let us suppose that the matrix L̂ can be presented in a form

L̂ = L̂0 +1ωQ̂ (29)

where the operator L̂0 represents some discrete version of the operator L̂I (13) and the
operator Q̂ represents some discrete version of the second-order differential operator

Q̂ = a0 + a1ω
−1 ∂

∂t
+ a2ω

−2

(

∂

∂t

)2

(30)

where functions a0, a1 and a2 are some smooth functions of time t of the order of unity.
Simple arguments show that the contribution to the determinant due to the a0 term is always
small in contrast to the contributions of the a1 and a2 terms which are of the order of unity.
To demonstrate this statement let us represent the operator L̂ in the form

L̂ = [1 +1ωQ̂Ĝ0]L̂0 Ĝ0 = (L̂0)−1 (31)

and the determinant takes the form

det[L̂] ' det[L̂0] exp(−2δA0) δA0 = −(1/2)1ωTr[Q̂Ĝ0]. (32)

One can check that in the discrete representation the matrix elements of the Green
function (Ĝ0)nn′ are of the order 1 and the characteristic width over n− n′ is of the order
of (ω1)−1. This means that the contribution of the a0 terms of the operator Q̂ into δA0 is
of the order of 1. This can be easily checked if we convert the trace in equation (32) into
an integral over t .

The first impression is that the contributions of the a1 and a2 terms to det[L̂] are
also small because the Green function (Ĝ0)nn′ has a width over t − t ′ of order ω−1 and its
derivatives have the order of magnitude ω. However, these arguments are completely wrong
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because the Green function is a singular function over t − t ′. It has a jump at t = t ′ and the
time derivative of this jump is of the order of 1−1. If the functions a1 and a2 → constant
at t → ±T/2 then δA0 ∼ constant ×ωT . If the functions a1 and a2 are localized over time
in a region of order ω−1 then δA0 ∼ constant.

At this point we can calculate corrections to the instanton contribution due to
renormalization of the measure and the functional determinant to leading order with respect
to 1/s. There are three sources of corrections of the order of 1 to the continuous
approximation. The first origin of corrections is the kinetic term. With the desired accuracy,
the action contains a term of the form

AB = s

N−1
∑

n=0

[

2
(z∗
n+1 − z∗

n)zn

1 + z∗
nzn

−
(z∗
n+1 − z∗

n)
2z2
n

(1 + z∗
nzn)

2

]

. (33)

The second origin of corrections is the Hamiltonian due to its dependence on z∗
n+1:

AH1 = gs21

N−1
∑

n=0

(z∗
n+1 − z∗

n)(3zn + z∗
n − 3z∗

nz
2
n − z3

n)

(1 + z∗
nzn)

3
. (34)

The third origin of corrections is the difference between the average of the square of the
Hamiltonian and the square of the average of the Hamiltonian:

AH2 = (1/2)12
N−1
∑

n=0

[ 〈zn|Ĥ 2|zn〉
〈zn|zn〉

−
( 〈zn|Ĥ |zn〉

〈zn|zn〉

)2]

. (35)

Since this correction depends (to leading order) only on z∗
n and zn it can contribute only to

the renormalization of the measure of integration.
At this stage we can calculate the measure and the determinant for the instanton

contribution with the necessary accuracy. We begin by interpreting the integration over
the variables z′

n and z′′
n (zn = z′

n + iz′′
n and z∗

n = z′
n − iz′′

n) in expression (4) for the partition
function Z as an integral over the two-dimensional surface Im(z′

n) = 0 and Im(z′′
n) = 0 of

the four-dimensional space where variables z′
n and z′′

n are considered as complex variables.
Because the function (1 + z∗

nzn)
−2 exp(A(z∗

n, zn)) is an analytic function of the variables z′
n

and z′′
n it can be continued in the four-dimensional complex manifold and, in this way, we

can arrive at the instanton saddle point. In the neighbourhood of the saddle point we have
to integrate over the two-dimensional manifold which realizes the directions of steepest
descent. The direction of steepest descent is chosen correctly if all eigenvalues of the
quadratic form in the exponent of the action are real.

This program can be realized with the help of the following change of variables z∗
n and

zn in the neighbourhood of the saddle point:

zn = z̄n + (i/
√
s)z̄n(ψn − vn/(1 + u2

n))

z∗
n = z̄∗

n − (i/
√
s)z̄∗

n(ψn + vn/(1 + u2
n)). (36)

Here we understand z̄n and z̄∗
n as classical (non-fluctuating) variables connected with the

previously introduced variables ϕn and un by the relations:

z̄n(ϕn, un) =
√

(1 − iun)/(1 + iun) exp(iϕn)

z̄∗
n(ϕn, un) =

√

(1 − iun)/(1 + iun) exp(−iϕn) (37)

thus the variables z̄n and z̄∗
n are not in our case complex conjugated. We shall understand

that the classical variables z̄n and z̄∗
n or xn = (ϕn, un) satisfy the classical equations of

motion which determine the saddle point with corrections of the order of 1 taken into
account. This means that only to leading order are the variables x equal to x

0
n = (ϕ0

n, u
0
n)
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determined by equation (15). The difference between the variables x and the variables x
0

is of the order of 1 and is determined by small corrections of the order of 1 contained in
the action AB (33) and corrections to the action AH1 (34) and AH2 (35). It is fortunate that
these corrections are non-essential to our problem.

The reason for this is the canonical form of the measure in terms of the variables
yn = (ψn, vn). Note that the change of variables (36) was suggested by the formulae of
differentiation over time of the quantities z̄n(ϕn, un) and z̄∗

n(ϕn, un).
At this stage we can calculate the renormalization of the functional determinant due

to the 1-corrections. This can be done on the basis of the following formula for the
decomposition of the action in the neighbourhood of the saddle point:

A(z∗, z) = A0 + 1

2s

∑

ni,n′j

∂2A(ϕ, u)

∂xni∂xn′j
yniyn′j + · · · . (38)

This formula strongly simplifies the calculations and can be proved if we consider the
original variables zn and z∗

n as functions of variables yn = (ψn, vn) on the one hand and of
the variables xn = (ϕn, un) on the other.

The matrix L̂0 can be chosen on the basis of (38) in the form

L̂0 =
(

an, −∂− + bn
∂+ + bn, cn

)

(39)

where the explicit form of the functions an, bn and cn is derived from the action (8)

at = gs(1 + u2
t ) cos(2ϕt ) bt = gsut sin(2ϕt )

ct = −gs(1 + cos2(ϕt )) (40)

and the difference derivatives are determined by the following relations:

∂−fn = (fn − fn−1)/1 ∂+fn = (fn+1 − fn)/1

∂2fn = (fn+1 + fn−1 − 2fn)/1
2. (41)

The Green function Ĝ0 satisfies the relation
∑

na

(L̂0)n,na (Ĝ
0)na ,n′ = δn,n′ (42)

and cannot be found in a general form. However this is unnecessary for our purposes. We
are interested in the singular part of the Green function (Ĝ0)n′n at n′ ≈ n. This singular
part of the Green function at n′ ≈ n can be found in a general form

(Ĝ0)n′,n = 1

(

1θn′,n(n
′ − n)cn, θn′,n(1 −1(n′ − 1 − n)bn)

−θn′+1,n(1 +1(n′ + 1 − n)bn), 1θn′+1,n(n
′ − n)an

)

(43)

where θn′n is the θ -function defined in the following manner:

θn′n =
{

1 n′ > n+ 1 ∂+θn′,n = 1−1δn′,n

0 n′ 6 n ∂−θn′+1,n = 1−1δn′,n.
(44)

After some tedious calculations the singular (containing essential derivatives) part of
the operator Q̂ entering in equation (31) can be presented in the form

(Q̂f )n = (1/2ω)

(

−(1 + u2
n)∂

2, ∂2 + (2ϕ̇nun − 3gs)∂−
∂2 − (2ϕ̇nun − 3gs)∂+, (1 + u2

n)
−1∂2

)

fn (45)

where fn is an arbitrary function. For the diagonal elements of the matrix Q̂ it is sufficient to
keep the second derivative. For non-diagonal elements we have to keep the first and second
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derivatives. Acting with the operator Q̂ on the Green function (Ĝ0)n′,n and calculating the
trace we obtain for the correction to the action δA0

δA0 = −(1/2)
∫

(ft − f∞) dt

ft = (1 + u2
t )

−1at − (1 + u2
t )ct + 4ϕ̇tut . (46)

Since we are interested in the ratio of determinants we subtract from the function ft its
value at the trivial saddle point f∞. Using equation (15) for ϕ̇ we find the final expression
for the correction to the instanton action δA0:

δA0 = −gs
∫ ∞

−∞
(1 − cos2(ϕt )) dt = − ln(1 +

√
2). (47)

The obtained result is surprisingly simple. It can be found if we change s ⇒ s+ 1/2 in the
expression for the energy splitting (19). Such a change has a quasiclassical meaning and
can be found by a simpler method than in this section. As the final result, instead of the
expression (19), we have for the ground-state energy E0 and for the instanton splitting

E0 = Emin + (ω − ω0)/2

δE = 8 × 21/4ω
√

s/π exp[−(2s + 1) ln(1 +
√

2)] cos(πs) (48)

where in the limit s → ∞ we have Emin = −s2f , ω = 2
√

2sf , ω0 = 3sf . This result
completely coincides with the result of [2] for the case A = B = f .

6. Comparison with the numerical results

In this section we will compare the exact ground-state energy and splitting with the results
obtained in the above discussion, namely equation (48). The Hamiltonian (3) is easily
diagonalized on the basis of the eigenfunctions of Ŝ2 and Ŝ0. The ground state belongs to
the symmetric representation and so we will just consider this representation for different
values of the total spin s. In table 1 the numerical and theoretical results for the ground-
state energy and its splitting (48) are presented. As expected the relative error between the
calculated and the exact ground-state energy decreases with increasing s.

7. Discussion

We want to discuss two points here: the interpretation of the replacement of s by s+1/2 in
the effective action and the procedure of the calculation of the corrections to the instanton
approximation.

Let us consider the explicit form of the spin operators acting on the space of functions

ψm(ϕ) = eimϕ/
√

2π 0 6 ϕ 6 2π m = −s, . . . , s. (49)

The spin operators have the form [2, 11]

Ŝ+ =
√

(s + 1/2)2 − (p̂ − 1/2)2 eiϕ Ŝz = p̂

Ŝ− = e−iϕ
√

(s + 1/2)2 − (p̂ − 1/2)2 p̂ = −i∂/∂ϕ. (50)

Substituting this representation for the spin operators (50) into the Hamiltonian (3) and
decomposing it in powers of p̂ (this decomposition can be justified) we obtain, up to order
1/s,

Ĥ (p̂, ϕ) = (f/2)(p̂2(1 + cos2 ϕ)− (s + 1/2)2 cos2 ϕ). (51)
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Table 1. Results for the ground-state energy and its splitting. The first column shows the
magnitude of spin, the second and third columns the exact and calculated ground-state energy,
respectively, the fourth and the fifth columns the exact and the calculated ground-state splitting,
respectively.

s E/f E0/f E0/E 1E/f Einst/f Einst/1E

1 −0.1000 × 101 −0.5429 × 100 0.5429 0.1000 × 101 0.5395 × 100 0.5395
2 −0.3464 × 101 −0.3129 × 101 0.9032 0.4641 × 100 0.3927 × 100 0.8461
3 −0.7899 × 101 −0.7714 × 101 0.9766 0.1530 × 100 0.1375 × 100 0.8988
4 −0.1442 × 102 −0.1430 × 102 0.9915 0.4137 × 10−1 0.3814 × 10−1 0.9220
5 −0.2299 × 102 −0.2289 × 102 0.9956 0.1004 × 10−1 0.9408 × 10−2 0.9368
6 −0.3357 × 102 −0.3347 × 102 0.9971 0.2282 × 10−2 0.2161 × 10−2 0.9470
7 −0.4615 × 102 −0.4606 × 102 0.9980 0.4959 × 10−3 0.4733 × 10−3 0.9544
8 −0.6074 × 102 −0.6064 × 102 0.9985 0.1043 × 10−3 0.1002 × 10−3 0.9600
9 −0.7732 × 102 −0.7723 × 102 0.9988 0.2142 × 10−4 0.2066 × 10−4 0.9644

10 −0.9591 × 102 −0.9581 × 102 0.9991 0.4314 × 10−5 0.4176 × 10−5 0.9680
11 −0.1165 × 103 −0.1164 × 103 0.9992 0.8555 × 10−6 0.8305 × 10−6 0.9708
12 −0.1391 × 103 −0.1390 × 103 0.9994 0.1675 × 10−6 0.1630 × 10−6 0.9733
13 −0.1637 × 103 −0.1636 × 103 0.9995 0.3244 × 10−7 0.3164 × 10−7 0.9753
14 −0.1902 × 103 −0.1902 × 103 0.9995 0.6228 × 10−8 0.6084 × 10−8 0.9770
15 −0.2188 × 103 −0.2187 × 103 0.9996 0.1186 × 10−8 0.1161 × 10−8 0.9787
16 −0.2494 × 103 −0.2493 × 103 0.9996 0.2247 × 10−9 0.2198 × 10−9 0.9784
17 −0.2820 × 103 −0.2819 × 103 0.9997 0.4206 × 10−10 0.4139 × 10−10 0.9839

We can calculate with this Hamiltonian the partition function applying the procedure of the
p − ϕ construction of the functional integral. We obtain a ‘functional integral’ in which in
each time section we have an integration over ϕ from 0 to 2π and a summation over m
from −s to s. Replacing the summation over m by an integration over p and extending it
to infinity, we see that the Hamiltonian (51) coincides with the Hamiltonian (8) with one
essential difference, namely, instead of s2 in (8) we have (s + 1/2)2 in (51). This means
that we can obtain the correct answer for the tunnelling splitting δE (48) in the continuous
representation [2]. Because we know at present that corrections are small (see discussion
later) there is one question remaining: Why are the corrections absent in the approach
discussed in this section? The explanation lies in the difference between the coherent state
construction of the functional integral and the p − ϕ construction. One can check that in
the calculation of the functional determinant in the p−ϕ functional integral the corrections
of the order of 1 are absent. These corrections are also absent in the usual problem of
tunnelling in quantum mechanics which is confirmed by the coincidence of the result of the
energy splitting with the quasiclassical one [9].

In conclusion, note that we can construct a perturbation expansion around the trivial
saddle point (10) as well as around the instanton solution (36). Both these expansions are
over the very well defined small parameter 1/s. We want to stress one peculiarity of this
perturbation theory: the presence of terms proportional to the number of time sections N .
The presence of such terms is the characteristic feature of the perturbation theory when the
measure of the integration is not trivial. In such theories the kinetic term is also non-trivial:
the effective mass or the coefficient before a term with the time derivative is a function of
the field variables. In the framework of perturbation theory such terms lead to divergencies
at large frequencies ω. These divergencies have to completely cancel the N -terms which
follow from the measure.

The inadequacy of the simple-minded continuous approximation in the framework of
the coherent state representation, to account for the splitting in the LMG model, has been
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previously remarked on in [2, 12]. In [12] it is shown that the WKB approximation produces
the correct splitting. However, these authors do not pinpoint the precise origin of the
detected discrepancy.
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