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Chapter 5. MAXWELL’S EQUATIONS IN UNIFORM RIGID MEDIA

This chapter studies the properties of electromagnetic fields in uniform (and
sectionally uniform) bulk solid media, where propagating electromagnetic plane
waves constitute the most common (but by no means the only) situation (see Sec. 12
for a lossless dielectric insulator and Sec. 13 for the quite different situation of a bulk
conductor). These model systems are of interest both for the detailed behavior of the
electric and magnetic fields and for the electromagnetic properties of the medium
itself. For example. waves in a nonconducting dielectric are remarkably different
from those in a conducting metal, and Sec. 14 explores in some detail the materials
physics that underlies this distinction.

11. Stress tensor

The three fundamental conservation laws for energy, linear momentum, and an-
gular momentum provide a basis for much of modern physics. The electromagnetic
aspects of the first have been treated in Sec. 10, in connection with the derivation of
Poynting’s theorem and the electromagnetic work in Eq. (10.45) done on some gen-
eral material system. In the present section, an analogous, but considerably more
intricate, analysis will consider the conservation of linear momentum, along with
an abbreviated treatment of angular momentum. The difference between energy on
the one hand and linear and angular momentum on the other arises from the vector
character of the momentum, in contrast to the energy, which is a scalar quantity.

Although it goes somewhat beyond the present context of classical electromag-
netism, it is worth recalling that these three conservation laws acquire a particular
significance in quantum theory, for they ultimately reflect the invariance of the vac-
uum with respect to infinitesimal translations in time and space, and with respect
t(z Zﬁnﬁg&esimal rotations. Specifically, the quantum-mechanical hamiltonian oper-
ator H (which is usually related to the total energy) is the operator that generates
infinitesimal translations in time; this result becomes obvious from the “formal”
solution ¥(t) = exp(iHt/h) ¥(0) to the Schrodinger equation —iho¥ /0t = HY,
where ¥(0) is the initial wavefunction at ¢t = 0. Similarly, the total momentum
P is the operator that generates infinitesimal spatial displacements, and the total
angular momentum L is the operator that generates infinitesimal rotations (for an
elementary but profound discussion of these ideas, see the Feynman Lectures, Vol. I,
Chap. 52, Vol. II, Chap. 27. and Vol. III. Chaps. 8, 17. and 20; for a more thor-
ough and conventional discussion. see, for example, Schiff, Quantum Mechanics, 3rd
edition, Secs. 26 and 27).
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One other fundamental conservation law is that for electric charge. Its el-
ementary form in Eq. (8.5) serves as a paradigm for all the remaining classical
conservation laws. Like the three laws discussed above, it also acquires a much
deeper interpretation in the context of quantum mechanics, where charge conser-
vation and gauge invariance are related to the invariance of physical phenomena
under a (global and/or local) change in the phase of the wave function. Some of
these ideas will be examined in Chap. 10 in connection with the lagrangian formu-
lation of electromagnetism (for a more comprehensive treatment, see, for example,
Raymond, Field Theory. A Modern Primer. pp. 244-248, or Itzykson & Zuber).

Conservation of linear momentum

For simplicity, the conservation of linear and angular momentum will be an-
alyzed only for particles in vacuum. where E and B constitute the complete elec-
tromagnetic fields; in this approach, all the charges and currents are made explicit.
The alternative treatments that deal explicitly with the polarization P and the mag-
netization M are complicated and subtle; remarkably, even now, some fundamental
questions remain unresolved, in part because of the evident difficulty in measuring
the local momentum density in a material medium (for a brief discussion of the
issues, see, for example. Jackson, Sec. 6.9, where additional references are given).
Ultimately, the present description in terms of only E and B must be correct, for
the auxiliary fields P and M merely represent suitable averages over particular
forms of charges and currents—the electric and magnetic dipoles. As will be seen,
the electromagnetic momentum density involves expressions that are quadratic in
the electromagnetic fields, and it is by no means obvious that the average of such
products are simply related to the product of the corresponding averages.

As in the beginning of Sec. 8, consider a set of point charges {g:} located at
instantaneous positions {r;(t)}. The total electromagnetic force on the particles
contained in some volume V follows from the Lorentz force in Eq. (9.3)

F= Z g (E+v; x B)|y,, here written in particle form, (11.1)

where the electric and magnetic fields are evaluated at the point r;(t). With the
definition of the charge and current density from Egs. (8.11) and (8.12),

p(r,t) = Z ¢ 6(r —13), (11.2)
i(rt) =) aqivi(r—ri), (11.3)
it is easy to verify that Eq. (11.1) has the equivalent expression
F = / dV (pE +j x B), here written in continuum form. (11.4)
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From Newton's laws of motion. this force must equal the rate of change of the total
mechanical momentum Py, in the volume. because it is simply the sum of the
change in the momentum of each particle

d

E Pmech =F = / aVv (PE +j X B) (115)

Both of these two expressions (11.4) and (11.5) contain field aspects (through E
and B) and matter aspects (through particle coordinates and velocities or charge
and current densities).

The two inhomogeneous vacuum Maxwell’s equations

p=¢ V- E, (11.6)
1
_losBoe%E (11.7)
Ho o’

will now be used to eliminate the matter aspects entirely from Eq. (11.5); direct
substitution immediately gives

d

= Pracan = /dV [e(, (V-BE)E+— (V xB) xB - 9E Bl (11.8)

Ho ot

Now perform the following steps:
(1) Integrate the last term by parts with the obvious relation

OE d 0B

~5r xB——d—(ExB)—l—Ex 57 (11.9a)
(2) Use Faraday’s law
9B _ -V xE (11.9b)
ot '
in the last term of Eq. (11.9a), so that Eq. (11.8) becomes
d
dp / dv [60 (V-E)E+—(V xB) xB
dt Ho
—eEXx(VXE)-— gi (e E x B)} . (11.10)

(3) Move the last term to the left-hand side and add a null term involving V-B = 0
to the integrand on the right-hand side; the result is

; . |
== [Pueen + / dV & E x B] = /dV [eO(V-E)E—eOEx (V x E)
it B)B_in(vXB)] (11.11)
Ho H
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Note that all four of Maxwell’'s equations have now been used to transform the
original Eq. (11.5) into Eq. (11.11).
The quantity

' g=eExB  MOMRUWH WO (11.12)

a0

is interpreted as the local “momentum density” of the electromagnetic fields in
vacuum—why is this so? A heuristic but plausible argument starts from the vacuum
form of the energy flux vector jp = E x B/ in Eq. (9.16), which characterizes the
flow of electromagnetic energy in the direction of the vector E x B at the vacuum
speed of light ¢. Consider a region where E x B is nonzero, and construct a small
right circular cylinder with its axis oriented along the direction of E x B, as shown
in Fig. 11.1. Let dA be the area of the base, with its perpendicular length cdt;
evidently, the volume of the cylinder is cdA dt. In an interval of time dt, all the
energy originally in cylinder flows out through the end, because dt is the time
it takes the energy to travel the length cdt, and no energy is lost through other
processes. Thus the total energy inside the cylinder at time t is simply jg - dA dt =
Lo '|E x B|dAdt. Correspondingly, the energy density in the cylinder becomes

densit total energy  ug '|E x B|dAdt 1
e ensity = = =
CRetey Y volume cdAdt Lo C

ExB|. (11.13)

To proceed, although the following discussion lies outside the strict bounds of
classical electromagnetism, think of the electromagnetic field as a set of “photons,”
each with an energy F = hw = hv determined through Planck’s celebrated rela-
tion, where w is the angular frequency (units of radians/sec), v is the conventional
frequency (units of cycles/sec, or Hz) and i = h/2r =~ 1.055 x 10737Js,
with h the conventional Planck’s constant. Photons are known to have zero mass
and to travel in vacuum at the speed of light c; for any massless particle, special
relativity shows that the associated momentum is simply 1/c times its energy. Con-
sequently, Eq. (11.13) immediately yields the magnitude of the momentum density
g = E x B/uoc® associated with the energy density of the photons that make up
the electromagnetic field, and the direction of the momentum density in vacuum is
necessarily the same as that for the energy flux jg. Equation (9.16) and the basic
relation eguoc? = 1 then yield the equivalent expressions

1
gzgz‘jEZEOEXBs (11.14)

which is just the expression in Eq. (11.12).
The total electromagnetic momentum in some finite volume V is simply the
volume integral of the electromagnetic momentum density

P.. = /dVg. (11.15)
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Fig. 11.1. Infinitesimal right circular cylinder with basal area dA and length cdt

used to study the energy lux and momentum density associated with electromag-
netic fields in free space. '




As a result, Eq. (11.11) takes the form

T (Pme.:ll + Pem) = rate of increase of total momentum in V.

(including both mechanical and electromagnetic parts)

:—/dV {eUEx (VXE)-¢E(V-E)

1 1
+—Bx(VxB)-—B(V-B)|. (11.16)
Ko Ho

Although it is not immediately obvious, it turns out that the ith component of
the right-hand side of this vector equation can be rewritten as a surface integral

— [dS; T;;, with Ti; a second-rank tensor. Temporarily accepting this assertion,
Eq. (11.16) then becomes

E?(Pme‘:h + Pem)i = - / dS;T;;, using the familiar Einstein convention,

' (11.17)
where T;; is known as the “electromagnetic stress tensor.” A simple rearrangement
gives

d '
E?(P“‘ec" + Pe), + / dS; T;; =0, (11.18)

which is the statement of the conservation of the ith component of total linear
momentum in some volume V. For comparison, recall the conservation of total
charge Q; Sec. 8 showed that dQ/dt+ [ dS, Jj = 0, where j; is the flux of charge in
direction 7; (equivalently, the jth component of the current density). Apart from
the extra cartesian index i, they are very similar, with the replacements Q — P;
and j; — T;;. Evidently. T}; has the interpretation:

T;; = the flux of the ith component of

total momentum density in the direction 75, (11.19)

and dS; T;; is the flux of the ith component of momentum through the oriented
area dS.

The proof that the right-hand side of Eq. (11.16) can be transformed into a
surface integral is somewhat tedious, but not subtle, and it is easiest to proceed
in steps. Since the electric and magnetic fields enter wholly symmetrically, it is
sufficient to treat only (say) the terms involving E.

(1) Consider the ith component of the first term

[E x (V x E)], = €ijk Ej €kim O Ery
= Ej (%EJ - Ej ajEi using Eq (820)

1

=3 0:(E;E}) — E; O, E,, (11.20a)
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or, returning to the more familiar vector notation,

Ex(VXE)= %VE2 —(E-V)E [note that (E-V)E #£E(V.- E)].
(11.200)
(2) The full electric contribution to Eq. (11.16) has the following ith component:
[E X (V X E) - E(V . E)]z = %81'E2 - Ej a]E-L - E1 5‘jEj
| = 3 0:E® - 9, (E.E;)
= @(%Ezél] - EiEj), (1121)

which is indeed the divergence of a Symmetric second-rank tensor. Evidently,
the terms involving B have an identical structure.

(3) The integral on the right-hand side of Eq. (11.16) thus has the form
—/dVajT” = —-/de nj, (1122)

where the right-hand side follows from the divergence theorem (the additional

free index 7 plays no direct role here), and the electromagnetic stress tensor T;;
is given explicitly by

1 1
Tij = 3645 (fo E* + —Bz) — € E;E; — — B;B;, (11.23a)
) Ho Ho
or, equivalently

Tij = %51-:]-50 (E2 +c? BQ) — €9 (E-L'Ej + 2 BlB]) (1123b)

(4) This fundamental expression merits several comments.’
(a) It is obvious by inspection that

Tij =Tji; the electromagnetic stress tensor T;; is symmetric. (11.24)

(b) To emphasize the remark after Eq. (11.19)

dS; Tij is the flux of the ith component of momentum across
the oriented area dS = dS n, along the direction 7. (11.25)

(c) If the total electromagnetic momentum Pem does not change in time, then
Eq. (11.17) provides an explicit expression for the ith component of the
mechanical force on the volume V surrounded by the surface S-

d
E(-Pmech)i = FimeCh = ‘_/S dS_] T;j, (1126)
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which accounts for the name “stress tensor;” remarkably, the force on the
charged particles in the interior of V is given here by a surface integral
that can lie wholly in the surrounding vacuum. If dPem /dt # 0, then this
contribution must also be included.

(d) The signs in Egs. (11.18) and (11.23) are chosen specifically to emphasize
the parallelism with charge conservation. Unfortunately, the commonly
defined “Maxwell stress tensor” TMa* = —T;; has the opposite sign from
that in Eq. (11.23), so that it is essential to be careful in using results from
other sources [see, for example. Jackson, Sec. 6.8; see, also L&L, Media,
footnote to Sec. 5, where Maxwell’s original convention is followed, and
L&L, Classical Theory of Fields, Sec. 33, which instead uses the convention
of Eq. (11.23)).

(e) The stress tensor plays a central role in many formulations of electro-
magnetism, especially in connection with special relativity (see Chap. 10),
where T;; will ultimately be recognized as the spatial part of the relativis-
tic 4 x 4 energy-momentum tensor. The concept of the stress tensor is
also essential in understanding much of fluid mechanics (especially com-
pressible viscous fluid) and elasticity (see, for example, FW, Mechanics,
Chaps. 9, 12, and 13), as well as magnetohydrodynamics (see Chap. 6 for
a derivation of the corresponding stress tensor for nonviscous fluids). Fi-
nally, in general relativity, the 4 x 4 energy-momentum tensor serves as
the source of the gravitational metric, in close analogy to the role played
by the charge and current density in electromagnetism.

(f) To be very explicit. the electromagnetic stress tensor has the typical diag-
onal and off-diagonal elements

1 1
T1:$:%<60E2+_Bz> _GUEE—_BE:
- Ho Ho

Yy

o1
=3 [eowg +E2-E)+—(B2+B?- Bﬁ)}
Ho (11.27)
= Leo[(E2 + E? — E2) + ¢ (B + B2 - B})),
1
Tpy = —co ELE, — o B.B, = —¢o(E.Ey + ¢* B, By).
0

Equation (11.18) constitutes the integral formulation of the conservation of
linear momentum, and it is often valuable to consider the alternative differential
form. Let f™e® be the mechanical force density; in the present case, Eq. (11.4)
shows that this quantity is simgly the Lorentz force density

fmech — pE +j x B. (11.28)
Use of Egs. (11.14), (11.15), and (11.18) shows that the integral formulation can be
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written as

' : dg;
/ dv (.f;““h + Bgt— + ajTi]) = 0. (11.29)
Just as in the derivation of the conservation law for charge density in Eq. (8.10),
this null integral vanishes for an arbitrary volume V', no matter how small, and it
follows that the integrand itself must vanish, leading to the differential conservation
law for linear momentum

0g;
ot

which is analogous to dp/0t + V -j = 0. Note that Eq. (11.30) now involves
the “divergence of the electromagnetic stress tensor” (which is itself a vector), in

contrast to the surface integral of T;; that appears in Eq. (11.18). To repeat in
words: '

fillle(:h +

+0,T;; =0, (11.30)

The sum of: (1) the mechanical force density (namely,
the rate of change of mechanical momentum density),
(2) the rate of change of electromagnetic momentum density, and
(3) the divergence of the electromagnetic stress tensor

necessarily vanishes identically at every point of the system. (11.31)

Alternatively, the quantity —9;T;; at the point r is the rate at which the ith compo-
nent of total momentum density increases from local inflow through an infinitesimal
surrounding surface.

It is instructive to consider a very simple example—a plane perfect conductor
occupies the halfspace (z < 0), with an external electrostatic field E (see Fig. 11.2).
Near the surface, the electric field necessarily lies along the normal 7 = % to the
plane surface, so that E = E3 = E, 3, and E, = E, = 0. The electromagnetic
stress tensor has the simple diagonal form

E?2 0 0
T=3e¢| 0 E2 0 |. (11.32)
0 0 -—E?
Thus, T has two positive elements
Tor =Tyy = 260 E2 > 0, (11.33a)
and one negative element
T..=—3€e E> <0 (11.33b)

both of these expressions are independent of the sign of E,. Furthermore, since

B = 0, the electromagnetic momentum density g = ¢y E x B vanishes identically
and plays no role here.
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The ith component of the total mechanical force on the conductor is simply

Fl‘ = /de1 = - /dS] T%j, (1134)

where the volume integral is over the region z < 0 and the surface integral is over
the plane z = 0. As always. the normal 7 points away from the region in question,
with dS = dz dy 2, and the total force becomes

F,=- / drdyz; T,; = —-/d;z:dyTiz. (11.35)

In the present case. the stress tensor T;; is diagonal. so that F, = F, = 0 (as
expected from the symmetry of the geometry), and

F,=- / dedyT,. = — /dmdy (— 3 €0 E?) = area x 3 €0 E2. (11.36)

This quantity is positive, independent of the sign of the electric field; hence an
electric field applied to the plane surface of a perfect conductor always pulls on
the surface (this result is obvious from the picture of the lines of electric field as
analogous to elastic fibers). The physically relevant quantity is the force per unit
area, which is just

£ se0E2=10E,, (11.37)

area
because Eq. (3.5) shows that ¢ = ¢, E. is the surface charge density. The factor
of % may initially be surprising, given that the force on an external point charge q
at the surface would just be qE'- 2; here. however, the surface charge density also
serves as the source of the electric field in the exterior (since E vanishes deep in the
interior), and the factor of 3 can be considered a screening correction that accounts
for the continuous decrease of the electric field in passing from the vacuum through
the surface layer to the interior of the conductor (see Purcell, Sec. 1.14 for a careful
treatment). This simple example shows in detail how the stress tensor converts a
volume effect into a surface one. It is somewhat analogous to Gauss’s law, in which
the total charge inside some surface can be determined from the electric field on a
surrounding surface; here the validity of this equivalence depends on the explicit
use of all four Maxwell’s equations in the derivation of Eq. (11.17) from Eq. (11.5).

Conservation of angular momentum

The stress tensor facilitates the analogous discussion of the conservation of
angular momentum and the associated mechanical and electromagnetic torque; most
of the analysis is very similar, so that the treatment will be quite brief. For the

same volume V, consider the total mechanical torque on the particles inside
=Y

Iwmech : /dVI‘ x fmech
| (11.38)
— i Lmech‘

dt
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where f™e°h is the Lorentz force density from Eq. (11.28) and L™ is the total
(mechanical) angular momentum of the particles contained in the volume V. Note
that both I' and L depend on the choice of origin of coordinates.

Take the ith component of this equation and use Eq. (11.30)

Lmech
L / 4V r; fech

9
= €4k /dV < - ﬂ ~ ) TH) (11.39)

The electromagnetic angular momentum L™ is the volume integral of r x g, so that

d
= (Lo + LE™) = —eqji / dVr; 0, T
= —€ijk /dV [00 (7} Tkt) — Trr Oury]. (11.40)
The last term is zero because 9, 1; = 6;; and T' is symmetric (hence this term involves

€ijk Tk;, which vanishes by symmetry); as a result, the right-hand side is again the
volume integral of a “vector divergence.” Define the flux of angular-momentum
density (equivalently, the angular-momentum current density)

M = € Th s (11.41)

the right-hand side of Eq. (11.40) can then be written — [ dV 8, My, = — [ dS, My,
where the last form follows from the divergence theorem. Ev1dently, dS; M;; is
the flux of the ith component of angular momentum through the oriented surface
dS = dSnand — [ dS; M, is the net influx of the ith component of angular momen-
tum into the volume V' through the surroundlng surface. In this way, Eq. (11.40)
yields the integral form of the conservation of total angular momentum

(—%(L;“e"h + L™ + / dS; My = 0. (11.42)

The corresponding local differential expression follows from the integrand of this
relation

(rx £7eh). + gt( g),+ 0 My =0. (11.43)

Prob 5.7 considers an application of these relations to a long charged rod placed
inside a solenoid. where the electfomagnetic momentum density and electromagnetic
angular-momentum density play an essential role (see Feynman, Vol. II, Secs. 17-4
and 27-6, for a few elementary and brief, but very relevant, remarks).
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